Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
papers [2021/09/08 02:22]
admin
papers [2025/07/24 09:42] (current)
admin [Published papers]
Line 1: Line 1:
 ===== Published papers ===== ===== Published papers =====
-    - //​[[https://​doi.org/​10.1016/​j.jnt.2021.07.009|Diophantine triples and K3 surfaces]]//,​ with Matija Kazalicki, ​Journal of Number Theory (2021, in press) (open access) +    ​- [[https://​doi.org/​10.1016/​j.jnt.2025.06.001 | Divisibility sequences related to abelian varieties isogenous to a power of an elliptic curve]], with Stefan Barańczuk and Matteo Verzobio, J. Number Theory (2026), Vol. 279, 170-183. (open access) 
-    - //​[[https://​doi.org/​10.1107/​S2053273321004320 | A topological proof of the modified Euler characteristic based on the orbifold concept]]//,​ with Zbigniew Dauter and Mariusz Jaskólski, ​ Acta Crystallographica Section ​A: Foundations and Advances ​(2021), Vol.7, No. 4,  317-326 (open access) +    - //​[[https://​rdcu.be/​edbEv|Second moments and the bias conjecture for the family of cubic pencils]]//,​ with Matija Kazalicki, Math. Z. 309, 72 (2025). 1-31. ([[https://​arxiv.org/​abs/​2012.11306|preprint]]+[[https://​bnaskrecki.faculty.wmi.amu.edu.pl/​doku.php/​second_moments|code]]) 
-    - //​[[https://​doi.org/​10.1107/​S2053273320016186 | Arithmetic proof of the multiplicity-weighted Euler characteristic for symmetrically arranged space-filling polyhedra]]//,​ with Zbigniew Dauter and Mariusz Jaskólski, Acta Crystallographica Section ​A: Foundations and Advances ​(2021), Vol.7, No. 2, 126-129 (open access) +    - //​[[https://​doi.org/​10.1007/​s40828-024-00199-8|Periodic arrangements of closely packed spheres]]//,​ with Zbigniew Dauter and Mariusz Jaskolski, ChemTexts 11, 2 (2025). 1-17. (open access) 
-    - //​[[https://​dx.doi.org/​10.4310/​CNTP.2020.v14.n4.a4|Arithmetic and geometry of a K3 surface emerging from virtual corrections to Drell-Yan scattering]]//,​ with Marco Besier, Dino Festi and Michael Harrison, ​Communications in Number Theory ​and Physics ​(2020), Vol. 14, No. 4, 863-911([[https://​arxiv.org/​abs/​1908.01079|preprint version]]+ [[drell_yan_k3s|code]]+    - //​[[https://​doi.org/​10.1107/​S2053273324010763|Growth functions of periodic space tessellations]]//,​ with Jakub Malinowski, Zbigniew Dauter and Mariusz Jaskolski, Acta Crystallogr.,​ Sect. A: Found. Adv. (2025), Vol. 81, No. 1, 64-81. (open access) 
-    - //​[[https://​doi.org/​10.1016/​j.jnt.2019.12.002|Primitive divisors of elliptic divisiblity sequences over function fields with constant j-invariant]]//,​ with Marco Streng, ​Journal of Number Theory (2020), Vol.213, 152-186 ​([[https://​arxiv.org/​abs/​1904.12393|preprint version]]+    - //​[[https://​doi.org/​10.1017/​prm.2024.7|Common valuations of division polynomials]]//,​ with Matteo Verzobio, Proc. A. R. Soc. Edinb. Published online (2024):​1-15.(open access) 
-    - //​[[https://​doi.org/​10.1112/​S0010437X19007693|The generalized Fermat equation with exponents 2, 3, n]]//, with Nuno Freitas and Michael Stoll, ​Compositio Mathematica, Vol. 156 (1) (2020), 77-113. (see also a [[http://​www.setforbritain.org.uk/​2017psr/​M-NASKRECKI-3706-PSR.pdf| poster]] for [[http://​www.setforbritain.org.uk/​index.asp | STEM for Britain]]) ([[https://​arxiv.org/​abs/​1703.05058|preprint version]])+    - //​[[https://​aif.centre-mersenne.org/​item/​10.5802/​aif.3635.pdf|Geometry of the del Pezzo surface y^2=x^3+Am^6+Bn^6]]//,​ with Julie Desjardins, Ann. Inst. Fourier 74 (2024) no.5 p. 2231-2274 (open access+[[https://​zenodo.org/​records/​10659434|code]]) 
 +    - //​[[https://​doi.org/​10.1107/​s160057672101205x | The Euler characteristic as a basis for teaching topology concepts to crystallographers]]//,​ with Zbigniew Dauter and Mariusz Jaskólski, J. Appl. Cryst., (2022), Vol. 55, 154-167. (open access) 
 +    ​- //​[[https://​doi.org/​10.1016/​j.jnt.2021.07.009|Diophantine triples and K3 surfaces]]//,​ with Matija Kazalicki, ​J. Number Theory (2022), Vol. 236, 41-70 (open access) 
 +    - //​[[https://​doi.org/​10.1107/​S2053273321004320 | A topological proof of the modified Euler characteristic based on the orbifold concept]]//,​ with Zbigniew Dauter and Mariusz Jaskólski, ​ Acta Crystallogr.,​ Sect. A: Found. Adv. (2021), Vol.7, No. 4, 317-326(open access) 
 +    - //​[[https://​doi.org/​10.1107/​S2053273320016186 | Arithmetic proof of the multiplicity-weighted Euler characteristic for symmetrically arranged space-filling polyhedra]]//,​ with Zbigniew Dauter and Mariusz Jaskólski, Acta Crystallogr.,​ Sect. A: Found. Adv. (2021), Vol.7, No. 2, 126-129(open access) 
 +    - //​[[https://​dx.doi.org/​10.4310/​CNTP.2020.v14.n4.a4|Arithmetic and geometry of a K3 surface emerging from virtual corrections to Drell-Yan scattering]]//,​ with Marco Besier, Dino Festi and Michael Harrison, ​Commun. ​Number Theory ​Phys. (2020), Vol. 14, No. 4, 863-911(open access
 +    - //​[[https://​doi.org/​10.1016/​j.jnt.2019.12.002|Primitive divisors of elliptic divisiblity sequences over function fields with constant j-invariant]]//,​ with Marco Streng, ​J. Number Theory (2020), Vol. 213, 152-186. ​(open access
 +    - //​[[https://​doi.org/​10.1112/​S0010437X19007693|The generalized Fermat equation with exponents 2, 3, n]]//, with Nuno Freitas and Michael Stoll, ​Compos. Math., Vol. 156 (1) (2020), 77-113. (see also a [[http://​www.setforbritain.org.uk/​2017psr/​M-NASKRECKI-3706-PSR.pdf| poster]] for [[http://​www.setforbritain.org.uk/​index.asp | STEM for Britain]]) ([[https://​arxiv.org/​abs/​1703.05058|preprint version]])
     - //​[[https://​doi.org/​10.1007/​978-3-030-12558-5_7 |On higher congruences between cusp forms and Eisenstein series II]]//, Notes from the International Autumn School on Computational Number Theory: Izmir Institute of Technology 2017, Birkhäuser,​ 2019 ([[http://​arxiv.org/​abs/​1810.02134|preprint version]])     - //​[[https://​doi.org/​10.1007/​978-3-030-12558-5_7 |On higher congruences between cusp forms and Eisenstein series II]]//, Notes from the International Autumn School on Computational Number Theory: Izmir Institute of Technology 2017, Birkhäuser,​ 2019 ([[http://​arxiv.org/​abs/​1810.02134|preprint version]])
-    - //​[[http://​nyjm.albany.edu/​j/​2016/​22-46.html|Divisibility sequences of polynomials and heights estimates]]//,​ New York J. Math. 22 (2016), 989-1020. ([[http://​arxiv.org/​abs/​1609.04750|preprint version]]+    - //​[[http://​nyjm.albany.edu/​j/​2016/​22-46.html|Divisibility sequences of polynomials and heights estimates]]//,​ New York J. Math. 22 (2016), 989-1020. (open access
-  - //​[[https://​doi.org/​10.4064/​bc108-0-16|Distribution of Mordell-Weil ranks of families of elliptic curves]]//, Banach Center ​Publications ​108 (2016), 201-229,([[http://​arxiv.org/​abs/​1609.04731|preprint version]]+  - //​[[https://​doi.org/​10.4064/​bc108-0-16|Distribution of Mordell-Weil ranks of families of elliptic curves]]//, Banach Center ​Publ. 108 (2016), 201-229.(open access
-  - //​[[https://​doi.org/​10.1007/​978-3-319-03847-6_10| On higher congruences between cusp forms and Eisenstein series]]// in  Computations with Modular Forms © Springer-Verlag,​ Volume 6 (2014), 257-277 ​  ​([[http://​arxiv.org/​abs/​1206.1881|preprint version]])  +  - //​[[https://​doi.org/​10.1007/​978-3-319-03847-6_10| On higher congruences between cusp forms and Eisenstein series]]// in  Computations with Modular Forms © Springer-Verlag,​ Volume 6 (2014), 257-277([[http://​arxiv.org/​abs/​1206.1881|preprint version]])  
-  - //​[[https://​doi.org/10.4064/aa160-2-|Mordell–Weil ranks of families of elliptic curves associated to Pythagorean triples]]//,​ Acta Arith. 160 (2013), 159-183 ([[http://​arxiv.org/​abs/​1210.6933| preprint version]]+  - //​[[https://​www.impan.pl/en/​publishing-house/​journals-and-series/​acta-arithmetica/​all/​160/​2/​83309/​mordell-8211-weil-ranks-of-families-of-elliptic-curves-associated-to-pythagorean-triples ​|Mordell–Weil ranks of families of elliptic curves associated to Pythagorean triples]]//,​ Acta Arith. 160 (2013), 159-183(open access
-  - //​[[https://​doi.org/​10.2140/​involve.2010.3.297|Infinite family of elliptic curves of rank at least 4]]//, Involve, Vol. 3, No. 3 (2010), 297–316 ([[http://​arxiv.org/​abs/​0909.3424| preprint version]])+  - //​[[https://​doi.org/​10.2140/​involve.2010.3.297|Infinite family of elliptic curves of rank at least 4]]//, Involve, Vol. 3, No. 3 (2010), 297–316 (open access)
 ===== Preprints ===== ===== Preprints =====
-    - //Explicit equations ​of 800 conics on a Barth-Bauer quartic//, ([[https://​arxiv.org/​abs/​2108.13402 |preprint]]) +    - //On the geography ​of log-surfaces//, with Piotr Pokora, submitted ([[https://​arxiv.org/​abs/​2412.14635|preprint]]) 
-    - //Second moments and the bias conjecture for the family of cubic pencils//, with Matija Kazalicki, submitted ([[https://​arxiv.org/​abs/​2012.11306|preprint]]+[[https://​bnaskrecki.faculty.wmi.amu.edu.pl/​doku.php/​second_moments|code]]) +    - //Explicit equations ​of 800 conics on a Barth-Bauer quartic//, submitted([[https://​arxiv.org/​abs/​2108.13402 |preprint]])
-    - //Geometry ​of the del Pezzo surface y^2=x^3+Am^6+Bn^6//, with Julie Desjardins, submitted([[https://​arxiv.org/​abs/​1911.02684|preprint]]+[[https://​bnaskrecki.faculty.wmi.amu.edu.pl/​doku.php/​geometry_of_del_pezzo|code]])+
     - //​{{:​hyper24111.pdf|On a certain hypergeometric motive of weight 2 and rank 3}}//, submitted ([[https://​arxiv.org/​abs/​1702.07738|preprint]])     - //​{{:​hyper24111.pdf|On a certain hypergeometric motive of weight 2 and rank 3}}//, submitted ([[https://​arxiv.org/​abs/​1702.07738|preprint]])
     - //​Mordell-Weil ranks of families of elliptic curves parametrized by binary quadratic forms//, submitted ([[http://​arxiv.org/​abs/​1609.04715|preprint]])     - //​Mordell-Weil ranks of families of elliptic curves parametrized by binary quadratic forms//, submitted ([[http://​arxiv.org/​abs/​1609.04715|preprint]])
 +
 +===== Popular writing ====
 +  * [[https://​academia.pan.pl/​czym-jest-szyfrowanie/​|Czym jest szyfrowanie?​ (ACADEMIA (2023) No. 4 (76) pp. 18-21) ]]
 +  * [[https://​www.deltami.edu.pl/​2024/​05/​jej-wysokosc-krzywa-eliptyczna/​| Jej wysokość krzywa eliptyczna (Delta (2024) No. 5 (600) pp. 16-19)]]
 +
 ===== In preparation ===== ===== In preparation =====
     - //​Equiangular lines and an elliptic surface//, with Dan Fretwell and Neil I. Gillespie, in preparation     - //​Equiangular lines and an elliptic surface//, with Dan Fretwell and Neil I. Gillespie, in preparation