Differences

This shows you the differences between two versions of the page.

Link to this comparison view

- Both sides previous revision Previous revision
Next revision
- papers [2019/08/09 00:56] admin
+ Previous revision
+ papers [2025/07/24 09:42] (current) admin [Published papers]
@@ Line -1,59 +1,39 @@ removed created
 ===== Published papers =====
     - [[https://​doi.org/​10.1016/​j.jnt.2025.06.001 | Divisibility sequences related to abelian varieties isogenous to a power of an elliptic curve]], with Stefan Barańczuk and Matteo Verzobio, J. Number Theory (2026), Vol. 279, 170-183. (open access)
     - //​[[https://​rdcu.be/​edbEv|Second moments and the bias conjecture for the family of cubic pencils]]//,​ with Matija Kazalicki, Math. Z. 309, 72 (2025). 1-31. ([[https://​arxiv.org/​abs/​2012.11306|preprint]]+[[https://​bnaskrecki.faculty.wmi.amu.edu.pl/​doku.php/​second_moments|code]])
     - //​[[https://​doi.org/​10.1007/​s40828-024-00199-8|Periodic arrangements of closely packed spheres]]//,​ with Zbigniew Dauter and Mariusz Jaskolski, ChemTexts 11, 2 (2025). 1-17. (open access)
     - //​[[https://​doi.org/​10.1107/​S2053273324010763|Growth functions of periodic space tessellations]]//,​ with Jakub Malinowski, Zbigniew Dauter and Mariusz Jaskolski, Acta Crystallogr.,​ Sect. A: Found. Adv. (2025), Vol. 81, No. 1, 64-81. (open access)
     - //​[[https://​doi.org/​10.1017/​prm.2024.7|Common valuations of division polynomials]]//,​ with Matteo Verzobio, Proc. A. R. Soc. Edinb. Published online (2024):​1-15.(open access)
     - //​[[https://​aif.centre-mersenne.org/​item/​10.5802/​aif.3635.pdf|Geometry of the del Pezzo surface y^2=x^3+Am^6+Bn^6]]//,​ with Julie Desjardins, Ann. Inst. Fourier 74 (2024) no.5 p. 2231-2274 (open access+[[https://​zenodo.org/​records/​10659434|code]])
     - //​[[https://​doi.org/​10.1107/​s160057672101205x | The Euler characteristic as a basis for teaching topology concepts to crystallographers]]//,​ with Zbigniew Dauter and Mariusz Jaskólski, J. Appl. Cryst., (2022), Vol. 55, 154-167. (open access)
     - //​[[https://​doi.org/​10.1016/​j.jnt.2021.07.009|Diophantine triples and K3 surfaces]]//,​ with Matija Kazalicki, J. Number Theory (2022), Vol. 236, 41-70 (open access)
     - //​[[https://​doi.org/​10.1107/​S2053273321004320 | A topological proof of the modified Euler characteristic based on the orbifold concept]]//,​ with Zbigniew Dauter and Mariusz Jaskólski, ​ Acta Crystallogr.,​ Sect. A: Found. Adv. (2021), Vol.7, No. 4, 317-326. (open access)
     - //​[[https://​doi.org/​10.1107/​S2053273320016186 | Arithmetic proof of the multiplicity-weighted Euler characteristic for symmetrically arranged space-filling polyhedra]]//,​ with Zbigniew Dauter and Mariusz Jaskólski, Acta Crystallogr.,​ Sect. A: Found. Adv. (2021), Vol.7, No. 2, 126-129. (open access)
     - //​[[https://​dx.doi.org/​10.4310/​CNTP.2020.v14.n4.a4|Arithmetic and geometry of a K3 surface emerging from virtual corrections to Drell-Yan scattering]]//,​ with Marco Besier, Dino Festi and Michael Harrison, Commun. Number Theory Phys. (2020), Vol. 14, No. 4, 863-911. (open access)
     - //​[[https://​doi.org/​10.1016/​j.jnt.2019.12.002|Primitive divisors of elliptic divisiblity sequences over function fields with constant j-invariant]]//,​ with Marco Streng, J. Number Theory (2020), Vol. 213, 152-186. (open access)
     - //​[[https://​doi.org/​10.1112/​S0010437X19007693|The generalized Fermat equation with exponents 2, 3, n]]//, with Nuno Freitas and Michael Stoll, Compos. Math., Vol. 156 (1) (2020), 77-113. (see also a [[http://​www.setforbritain.org.uk/​2017psr/​M-NASKRECKI-3706-PSR.pdf| poster]] for [[http://​www.setforbritain.org.uk/​index.asp | STEM for Britain]]) ([[https://​arxiv.org/​abs/​1703.05058|preprint version]])
     - //​[[https://​doi.org/​10.1007/​978-3-030-12558-5_7 |On higher congruences between cusp forms and Eisenstein series II]]//, Notes from the International Autumn School on Computational Number Theory: Izmir Institute of Technology 2017, Birkhäuser,​ 2019 ([[http://​arxiv.org/​abs/​1810.02134|preprint version]])
     - //​[[http://​nyjm.albany.edu/​j/​2016/​22-46.html|Divisibility sequences of polynomials and heights estimates]]//,​ New York J. Math. 22 (2016), 989-1020. (open access)
   - //​[[https://​doi.org/​10.4064/​bc108-0-16|Distribution of Mordell-Weil ranks of families of elliptic curves]]//, Banach Center Publ. 108 (2016), 201-229.(open access)
   - //​[[https://​doi.org/​10.1007/​978-3-319-03847-6_10| On higher congruences between cusp forms and Eisenstein series]]// in  Computations with Modular Forms © Springer-Verlag,​ Volume 6 (2014), 257-277. ([[http://​arxiv.org/​abs/​1206.1881|preprint version]]) ​
   - //​[[https://​www.impan.pl/​en/​publishing-house/​journals-and-series/​acta-arithmetica/​all/​160/​2/​83309/​mordell-8211-weil-ranks-of-families-of-elliptic-curves-associated-to-pythagorean-triples |Mordell–Weil ranks of families of elliptic curves associated to Pythagorean triples]]//,​ Acta Arith. 160 (2013), 159-183. (open access)
   - //​[[https://​doi.org/​10.2140/​involve.2010.3.297|Infinite family of elliptic curves of rank at least 4]]//, Involve, Vol. 3, No. 3 (2010), 297–316 (open access)
 ===== Preprints =====
     - //On the geography of log-surfaces//,​ with Piotr Pokora, submitted ([[https://​arxiv.org/​abs/​2412.14635|preprint]])
     - //Explicit equations of 800 conics on a Barth-Bauer quartic//, submitted([[https://​arxiv.org/​abs/​2108.13402 |preprint]])
     - //​{{:​hyper24111.pdf|On a certain hypergeometric motive of weight 2 and rank 3}}//, submitted ([[https://​arxiv.org/​abs/​1702.07738|preprint]])
     - //​Mordell-Weil ranks of families of elliptic curves parametrized by binary quadratic forms//, submitted ([[http://​arxiv.org/​abs/​1609.04715|preprint]])
 
 ===== Popular writing ====
   * [[https://​academia.pan.pl/​czym-jest-szyfrowanie/​|Czym jest szyfrowanie?​ (ACADEMIA (2023) No. 4 (76) pp. 18-21) ]]
   * [[https://​www.deltami.edu.pl/​2024/​05/​jej-wysokosc-krzywa-eliptyczna/​| Jej wysokość krzywa eliptyczna (Delta (2024) No. 5 (600) pp. 16-19)]]
 
 <nav class="​navbar navbar-expand-lg navbar-dark bg-primary">​
   <a class="​navbar-brand"​ href="#">​Navbar</​a>​
   <button class="​navbar-toggler"​ type="​button"​ data-toggle="​collapse"​ data-target="#​navbarColor01"​ aria-controls="​navbarColor01"​ aria-expanded="​false"​ aria-label="​Toggle navigation">​
     <span class="​navbar-toggler-icon"></​span>​
   </​button>​
 
   <div class="​collapse navbar-collapse"​ id="​navbarColor01">​
     <ul class="​navbar-nav mr-auto">​
       <li class="​nav-item active">​
         <a class="​nav-link"​ href="#">​Home <span class="​sr-only">​(current)</​span></​a>​
       </li>
       <li class="​nav-item">​
         <a class="​nav-link"​ href="#">​Features</​a>​
       </li>
       <li class="​nav-item">​
         <a class="​nav-link"​ href="#">​Pricing</​a>​
       </li>
       <li class="​nav-item">​
         <a class="​nav-link"​ href="#">​About</​a>​
       </li>
     </ul>
     <form class="​form-inline my-2 my-lg-0">​
       <input class="​form-control mr-sm-2"​ type="​text"​ placeholder="​Search">​
       <button class="​btn btn-secondary my-2 my-sm-0"​ type="​submit">​Search</​button>​
     </​form>​
   </​div>​
 </​nav>​
 
 ===== Published papers =====
     - {{:​genfermat-export.pdf|The generalized Fermat equation with exponents 2, 3, n}}, with Nuno Freitas and Michael Stoll ([[https://​arxiv.org/​abs/​1703.05058|preprint version]]), Compositio Mathematica (to appear). (see also a [[http://​www.setforbritain.org.uk/​2017psr/​M-NASKRECKI-3706-PSR.pdf| poster]] for [[http://​www.setforbritain.org.uk/​index.asp | STEM for Britain]])
     - [[https://​www.springer.com/​gp/​book/​9783030125578 |On higher congruences between cusp forms and Eisenstein series II]], Notes from the International Autumn School on Computational Number Theory: Izmir Institute of Technology 2017, Birkhäuser,​ 2019 ([[http://​arxiv.org/​abs/​1810.02134|preprint version]])
     - [[http://​nyjm.albany.edu/​j/​2016/​22-46.html|Divisibility sequences of polynomials and heights estimates]],​ New York J. Math. 22 (2016) 989–1020. ([[http://​arxiv.org/​abs/​1609.04750|preprint version]])
   - {{:​bnaskrecki_distribution_of_mw_ranks.pdf|Distribution of Mordell-Weil ranks of families of elliptic curves}}, Banach Center Publications 108 (2016), 201-229,​[[https://​www.impan.pl/​pl/​wydawnictwa/​banach-center-publications/​all/​108|DOI:​ 10.4064/​bc108-0-16]] ([[http://​arxiv.org/​abs/​1609.04731|preprint version]])
   - [[http://​www.springer.com/​mathematics/​numbers/​book/​978-3-319-03846-9| On higher congruences between cusp forms and Eisenstein series]] in  Computations with Modular Forms © Springer-Verlag,​ Volume 6, 2014, 257-277 ​  ​([[http://​arxiv.org/​abs/​1206.1881|preprint version]]) ​
   - [[http://​journals.impan.pl/​cgi-bin/​doi?​aa160-2-5 |Mordell–Weil ranks of families of elliptic curves associated to Pythagorean triples]], Acta Arith. 160 (2013), 159-183 ([[http://​arxiv.org/​abs/​1210.6933| preprint version]])
   - [[http://​pjm.math.berkeley.edu/​involve/​2010/​3-3/​p06.xhtml|Infinite family of elliptic curves of rank at least 4]], Involve, Vol. 3 (2010), No. 3, 297–316 ([[http://​arxiv.org/​abs/​0909.3424| preprint version]])
 ===== Preprints =====
     - Arithmetic and geometry of a K3 surface emerging from virtual corrections to Drell--Yan scattering, with Marco Besier, Dino Festi and Michael Harrison, [[https://​arxiv.org/​abs/​1908.01079|preprint]] (+ [[drell_yan_k3s|code]])
     - Primitive divisors of elliptic divisiblity sequences over function fields with constant j-invariant,​ with Marco Streng, submitted ([[https://​arxiv.org/​abs/​1904.12393|preprint]])
     - {{:​hyper24111.pdf|On a certain hypergeometric motive of weight 2 and rank 3}}, submitted ([[https://​arxiv.org/​abs/​1702.07738|preprint]])
     - Mordell-Weil ranks of families of elliptic curves parametrized by binary quadratic forms, submitted ([[http://​arxiv.org/​abs/​1609.04715|preprint]])
 ===== In preparation =====
     - Diophantine triples ​//​Equiangular lines and K3 surfaces, with Matija Kazalicki, in preparation 
     - Geometry of the del Pezzo an elliptic ​surfacey^2=x^3+Am^6+Bn^6//, with Julie DesjardinsDan Fretwell and Neil I. Gillespie, in preparation 
     - //On realisations of weight 0 hypergeometric motives of small degrees//, in preparation (with [[http://​magma.maths.usyd.edu.au/​magma/​handbook/​text/​15161543#1728617716|Magma package]]) 
 ===== Theses =====
 //{{:​bn_phd_thesis.pdf|"​Rangi w rodzinach krzywych eliptycznych i formy modularne"​}}//, Ph. D. thesis, 2014 
 
 //{{:​matma.pdf|"​O pewnym równaniu diofantycznym"​}}//, M. Sc. thesis, 2010 
 ===== Online apps ===== 
   - [[http://​demonstrations.wolfram.com/​NumericalIntegrationUsingRectanglesTheTrapezoidalRuleOrSimps|Numerical Integration using Rectangles, the Trapezoidal Rule, or Simpson'​s Rule from The Wolfram Demonstrations Project]] 
   - [[http://​demonstrations.wolfram.com/​MotionOfASimplePendulumWithDamping|Motion of a Simple Pendulum with Damping from The Wolfram Demonstrations Project]] 
   - [[http://​demonstrations.wolfram.com/​WorkInAnAttractiveInverseSquareField|Work in an Attractive Inverse-Square Field" from The Wolfram Demonstrations Project]] 
   - [[http://​demonstrations.wolfram.com/​DrivenDampedOscillatorWithResonanceEffect|Driven Damped Oscillator with Resonance Effect"​ from The Wolfram Demonstrations Project]]