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1. Introduction

In this paper we extend computations and theorems of [11] to the case where
N , the level of the newforms space is a square-free number. We present also a
summary of a large amount of computations performed with MAGMA. We present
also a construction of the algorithm that is used to find congruences between Hecke
parabolic eigenforms and the Eisenstein series. We also present the partial classi-
fication of congruences when the coefficients of both modular forms are contained
in Q.

Notation

• N ≥ 1 integer, k ≥ 2 even integer,
• Bk - k-th Bernoulli number determined by the series expansion t

et−1 =∑∞
n=0 Bk

tk

k! ,
• σk−1(n)(n) =

∑
m|n

mk−1 defined for k ≥ 2,

• Ek = −Bk2k +
∑∞
i=1 σk−1(n)qn - Eisenstein series of weight k,

• H = {τ ∈ C : =τ > 0} - upper half-plane,

• Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : N | c

}
- congruent subgroup of level N

• Mk(N) - space of modular forms of weight k and level N with respect to
group Γ0(N),

• Sk(N) - subspace of cuspforms inMk(N),
• Ek(N) - subspace of Eisenstein serie inMk(N),
• Sk(N)new - subspace of newforms in Sk(N),
• TN - Hecke algebra acting onMk(N),
• Tp - Hecke operator with index p, p - N ,
• Up - Hecke operator with index p, p | N ,
• an(f) - n-th Fourier coefficient of form f expanded at infinity

2. Main theorems

With the notation of Section 3 we present the main theorems of this paper.

Theorem 2.1. Let p1, . . . , pt be different prime factors of N and let k > 2. Suppose
we have a newform f ∈ Sk(N)new which is congruent to the Eisenstein eigenform
E = [p1]+ ◦ . . .◦ [pt]+Ek ∈ Ek(N) modulo a power r > 0 of a maximal ideal λ ⊂ Of .
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If ` is the residual characteristic of λ, we obtain the bound

r ≤ ordλ(`) · v`

(
−Bk2k

t∏
i=1

(1− pi)
)
.

Proof. This is the proof of Corollary 4.2. �

Theorem 2.2. Let p,q be two different primes. Suppose we have a newform f ∈
S2(pq)new with rational coefficients and let E be an eigenform in E2(pq). Let ` be a
prime number and r > 0 an integer such that congruence (5.1) holds for all n ≥ 0.
Then one of two conditions holds

(1) `r ∈ {2, 3, 4, 5},
(2) `r = 7 and E = [13]−[2]+E2.

Proof. This is the proof of Theorem 5.2. �

3. Standard basis of Eisenstein eigenforms

In this section we are going to present a convenient basis of Eisenstein eigenforms
in Ek(N) for all k ≥ 2 with respect to Hecke algebra TN . We believe that the
presented material is not new, however due to a lack of complete reference we
present full proofs here. Let us denote by Ad a linear endomorphism acting on
Mk(N) such that Ad : f(τ) 7→ f(dτ). The operator Ad is just a normalized slash
operator Ad(f) = d1−kf |k γ where

γ =
(
d 0
0 1

)
.

We quote now a theorem of Atkin-Lehner which will be used at several places.

Theorem 3.1 ([1, Lemma 15]). Let f be a modular form inMk(N). We have the
following relation between different Hecke operators acting on f

(Tq ◦ Up)(f) = (Up ◦ Tq)(f) for p 6= q,(3.1)
(Tq ◦Ad)(f) = (Ad ◦ Tq)(f) for (q, d) = 1,(3.2)
(Uq ◦Ad)(f) = (Ad ◦ Uq)(f) for (q, d) = 1.(3.3)

For any k > 2 the series Ek is an eigenform in Mk(1) with respect to Hecke
algebra T1. In particular for any Tn acting onMk(1) for k > 2 we have
(3.4) Tn(Ek) = an(Ek)Ek = σk−1(n)Ek.
We also record three simple identities related to σk functions. Let n be a positive
integer and p a prime number such that p | n. For any k ≥ 2 we have the following
identities

σk−1(np) + pk−1σk−1(n/p) = σk−1(p)σk−1(n),(3.5)
σk−1(n)− pk−1σk−1(n/p) = σk−1(np)− pk−1σk−1(n),(3.6)

σk−1(np)− σk−1(n) = pk−1(σk−1(n)− σk−1(n/p)).(3.7)
For a fixed positive integer d we define two additional linear operators

[d]+ := T1 − dk−1Ad :Mk(Γ0(N))→Mk(Γ0(Nd)),
[d]− := T1 −Ad :Mk(Γ0(N))→Mk(Γ0(Nd)).
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Proposition 3.2. Let d, e be two positive integers and δ, ε ∈ {+,−}. Operators
[d]δ and [e]ε commute.

Proof. By definition the operators Ad and Ae commute, so the proposition follows.
�

We compute the action of Up and [p]± on Ek explicitly. We adopt the convention
that σk−1(r) = 0 for any r ∈ Q \ Z.

Lemma 3.3. Let k > 2 and p be a prime number. We have equalities
Up([p]+Ek) = [p]+Ek,(3.8)
Up([p]−Ek) = pk−1[p]−Ek.(3.9)

Proof. Fix the integer k > 2 and a prime p. We denote by F the form [p]+Ek, it
lies inMk(p). The n-th Fourier coefficient of UpF is as follows

an(UpF ) = anp(F ) = anp(Ek − pk−1ApEk) = anp(Ek)− pk−1an(Ek).
From the definition of the series Ek we finally get

an(UpF ) = σk−1(np)− pk−1σk−1(n).
On the other hand, the n-th Fourier coefficient of F is equal to

σk−1(n)− pk−1σk−1(n/p).
Application of identity (3.6) shows that UpF = F .
A similar reasoning combined with equation (3.7) proves the second statement of
the lemma. �

For a square-free level N we can now show the action of Hecke algebra on a
specific Eisenstein eigenform.

Lemma 3.4. Let k > 2. Fix a positive integer t and distinct prime numbers
p1, . . . , pt. Let N be a product of those primes. The form

E = [p1]+ ◦ . . . ◦ [pr]+ ◦ [pr+1]− ◦ . . . ◦ [pt]−Ek ∈ Ek(Γ0(N))
is an eigenform with respect to TN . Explicitly, the generators act as follows

TnE = σk−1(n)E, (n,N) = 1
UpiE = E, 1 ≤ i ≤ r

UpiE = pk−1
i E, r + 1 ≤ i ≤ t

Proof. Let ` be a prime number not dividing N . Equality (3.2) and the definitions
of [p]+ and [p]− imply that operators T` and [pi]± commute for any i in range
{1, . . . , t} and for any choice of the sign ±. It follows that

T`E = [p1]+ ◦ . . . ◦ [pr]+ ◦ [pr+1]− ◦ . . . ◦ [pt]−(TlEk).
Equality (3.4) implies that T`E = σk−1(`)E. The operator T`s for a fixed s > 1
equals P (T`) for a specific choice of P ∈ Z[x], so T`sE = P (σk−1(`))E. Polynomial
P is determined by the recurrence relation

T`s = T`T`s−1 − `s−1T`s−2 .

If we put n = `s−1 in equation (3.5) the equation P (σk−1(`)) = σk−1(`s) follows,
so T`sE = σk−1(`s)E. For a given n coprime to N the equation TnE = σk−1(n)E
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follows now from the definition of Tn and the fact that σk−1 is a multiplicative
function.

Let i be a fixed number in the set {1, . . . , r}. Equation (3.3) implies that Upj ◦
[pi]+ = [pi]+ ◦ Tpj and Upj ◦ [pi]− = [pi]− ◦ Tpj for any j 6= i. Proposition 3.2
implies that the form E can be written as

E = [p1]+ ◦ . . . ◦ [pi−1]+ ◦ [pi+1]+ ◦ . . . ◦ [pr]+ ◦ [pr+1]− ◦ . . . ◦ [pt]− ◦ [pi]+Ek.

and Upi acts on E in the following way

UpiE = [p1]+ ◦ . . . ◦ [pi−1]+ ◦ [pi+1]+ ◦ . . . ◦ [pr]+ ◦ [pr+1]− ◦ . . . ◦ [pt]− ◦Upi [pi]+Ek.

Equation UpiE = E is a direct consequence of (3.8). For i > r we proceed in a
similar way to show UpiE = pk−1

i E. Hecke algebra TN is generated by operators
Tn for (n,N) = 1 and Upi for 1 ≤ i ≤ t, so the above argument shows that E is an
eigenform with respect to TN . �

We express now a basis of eigenforms for k > 2 andN square-free. IfN = N−N+

is a decomposition into two possibly trivial factors, we define

(3.10) E
(k)
N−,N+ = [q1]ε1 ◦ . . . [qt]εtEk

where t is the number of prime factors of N and q1, . . . , qt are the prime factors of
N . For i in {1, . . . , t} we define

εi =
{

+, if qi|N+
−, if qi|N−

For N = 1 we have only one form E
(k)
1,1 = Ek. We will often drop the upper index

in E(k)
N−,N+ and write EN−,N+ if it is clear from the context what is the weight k.

Theorem 3.5. Let k > 2 and N square-free. The set

B := {E(k)
N−,N+ : N = N−N+}

forms a basis of C-linear space Ek(N). Each element of this basis is an eigenform
with respect to Hecke algebra TN . The cardinality of the basis is 2t where t is the
number of prime factors of N .

Proof. Forms from the set B are linearly independent because they have different
sets of eigenvalues with respect to Hecke algebra TN , cf. Lemma 3.4. Let d(N)
denote the number of divisors of N . We can choose N− from d(N) possible divisors
of N , the factor N+ is determined by this choice. Hence the cardinality of B is
equal d(N) = 2t. But from [5, Theorem 3.5.1] we know that the dimension of the
space Ek(N) equals 2t, so B is a basis of this space. �

Corollary 3.6. Let k > 2 and N square-free with prime factors p1, . . . , pt. Choose
a form EN−,N+ ∈ Ek(N) which is an eigenform. Let a0(EN−,N+) denote the initial
coefficient of the q-expansion of E at infinity. Then

a0(EN−,N+) = −Bk2k

t∏
i=1

(1− pk−1
i ), if N− = 1

a0(EN−,N+) = 0, if N− > 1



ON HIGHER CONGRUENCES II 5

Proof. Observe that for any form f and prime p we have a0([p]−f) = 0. The
operators [·]− and [·]+ commute, so when N− > 1 we can write EN−,N+ as [p]−f
where p is prime and f is a form in Ek(N/p), hence a0(EN−,N+) = 0. Now for any
form f and prime p we obtain

(3.11) a0([p]+f) = a0(f)(1− pk−1).

So if N− = 1 we get

a0(EN−,N+) = −Bk2k

t∏
i=1

(1− pk−1
i )

if we apply successively equation (3.11) to each factor of N . Finally we recall that
a0(Ek) = −Bk2k . �

In weight k = 2 the series E2 does not define a modular form in M2(1), so in
order to find the basis of eigenforms in E2(N) we need to do some modifications
to the argument above. It is well-known that for a prime p the form [p]+E2 is a
modular form in E2(p).

Lemma 3.7. Let p be a prime number. The form [p]+E2 ∈ E2(p) is an eigenform
with respect to Hecke algebra Tp. Fourier coefficient a1([p]+E2) is 1 and for a prime
q 6= p the q-th Fourier coefficient of [p]+E2 is q + 1. The following identities hold

Up([p]+E2) = [p]+E2,

Tn([p]+E2) = an(E2)[p]+E2, dla (n,Np) = 1.

Proof. Let ` 6= p be a prime number. For a fixed integer n we get

an(T`([p]+E2)) = σ1(n`)− pσ1(n`/p) + `σ1(n/`)− `pσ1(n/(`p)).

On the other hand we know that

(1 + `)an([p+]E2) = (1 + `)(σ1(n)− pσ1(n/p)).

We apply now equation (3.5) to get by the definitions of T` and E2 that

an(T`([p]+E2)) = (1 + `)an([p+]E2).

It is easy to see that

an(Up[p]+E2) = anp([p]+E2) = σ1(np)− pσ1(n) = σ1(n)− pσ1(n/p) = an([p]+E2).

The third equation is a consequence of (3.6). In consequence, the form [p]+ is an
eigenform with respect to Up and any T` for ` 6= p, so it is an eigenform with
respect to Tp. The second equation from the statement of the lemma follows from
the definition of Tn and from the multiplicativity of σ1. From the definition we
also obtain that a1([p]+E2) = a1(E2) = σ1(1) = 1 and also aq([p]+E2) = aq(E2) =
σ1(q) = 1 + q for any prime q 6= p. �

Lemma 3.8. Let N > 1 be square-free integer. Suppose f ∈ E2(N) is an eigenform
with respect to TN such that a1(f) = 1 and aq(f) = 1 + q for any prime q - N .
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For a fixed prime p - N the forms [p]+f and [p]−f ∈M2(Np) are eigenforms with
respect to TNp. The following identities hold

Up([p]+f) = [p]+f,
Up([p]−f) = p[p]−f,
Tn([p]+f) = an(f)[p]+f, dla (n,Np) = 1,
Tn([p]−f) = an(f)[p]−f, dla (n,Np) = 1.

Moreover a1([p]±f) = 1 and aq([p]±f) = 1 + q for any prime q - Np.

Proof. Let ` be prime not dividing Np. Formula (3.2) implies that (T` ◦ [p]+)f =
([p]+ ◦ T`)f . Form f is normalized so T`f = a`(f)f and it follows that T`([p]+f) =
a`(f)[p]+f . We do a similar reasoning to show T`([p]−f) = a`(f)[p]−f . From the
multiplicativity of σ1, definition of E2 and of Tn for (n,Np) = 1 we obtain third
and fourth equation from the statement of the lemma.
Equality Up([p]−f) = p · [p]−f is equivalent to
(3.12) anp(f)− an(f) = p(an(f)− an/p(f)).
Form f is a normalized eigenform for TN , so when p - n we get anp(f) = an(f)ap(f).
Since p - N we get ap(f) = 1 + p and equation (3.12) holds. In the case n = n′pα

for α > 0 equation (3.12) is equivalent to
apα+1(f) = (p+ 1)apα(f)− papα−1(f).

But this holds because f is an eigenform for TN , we have the recurrence relation
Tpα+1 = TpTpα−pTpα−1 and ap(f) = 1+p. We show Up([p]+f) = [p]+f in a similar
fashion. Now the equalities a1([p]±f) = 1 and aq([p]±f) = 1 + q follow from the
assumptions made on f and from definitions of [p]±. �

For k = 2 we can adopt the notation E(k)
N−,N+ from (3.10) with one small excep-

tion: we require that N+ > 1.

Theorem 3.9. Let N > 1 be square-free. The set

B := {E(k)
N−,N+ : N = N−N+, N+ > 1}

forms a basis of C-linear space E2(N). Each element of this basis is an eigenform
with respect to Hecke algebra TN . The cardinality of the basis is 2t − 1 where t is
the number of prime factors of N .

Proof. We virtually repeat the proof of Theorem 3.5 replacing Lemma 3.4 with
Lemma 3.8. The set B has one less element in this case and we confront it with [5,
Theorem 3.5.1] to prove that B is a basis of E2(N). �

Remark 3.10. Theorem 3.9 is proved in [13, §2] in another way and the proof
requires additional tools which are not necessary in our proof.

Corollary 3.11. Let N be square-free with prime factors p1, . . . , pt. Choose a form
E = EN−,N+ ∈ E2(N) which is an eigenform. Then

a0(EN−,N+) = −B2

4

t∏
i=1

(1− pi), if N− = 1

a0(EN−,N+) = 0, if N− > 1
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Proof. ForN− > 1 the form EN−,N+ is of the form [p]−h for some form h ∈ E2(N/p)
and a prime p | N , so a0(EN−,N+) = 0. When N− = 1 we apply a0([p]+h) =
a0(h)(1− p) to get to conclusion. �

4. Upper bound of congruences

We discuss in this section general upper bound for the exponent of congruences
between cuspidal eigenforms and eigenforms in Eisenstein subspace for levels N
square-free and for even weights k ≥ 2. The theorems proved here generalize the
situation described in [11].

Lemma 4.1 ([1, Theorem 3]). Let N be a square-free integer and k ≥ 2 even. If
f ∈ Sk(N)new is a newform, then for any p | N we have

ap(f) = −λppk/2−1,

where λp ∈ {±1}.

Let K be a number field and OK its ring of integers. For an element α ∈ OK
and a maximal ideal λ ⊂ OK we denote by ordλ(α) the number that satisfies the
condition

n ≤ ordλ(α) ⇐⇒ λn | αOK .
We can naturally extend ordλ to a function on K×. For a prime ` ∈ Z we denote
by v` the standard `-adic valuation on Q×. For any a ∈ Q× we have ordλ(a) =
ordλ(`)v`(a) for ` being the field characteristic of OK/λ.

We denote by Kf the field of coefficients of the newform f ∈ Sk(N)new and by Of
its ring of integers.

Let f, g ∈Mk(N) be two eigenforms and K be a field that contains the composite
of Kf and Kg. We say that f and g are congruent modulo a power r of a maximal
ideal λ ∈ OK if and only if

an(f) ≡ an(E) (mod λr)

for all n ≥ 0, where {an(f)} and {an(g)} are Fourier coefficient of the q-expansion
at infinity.

Corollary 4.2. Let p1, . . . , pt be different prime factors of N and let k > 2. Sup-
pose we have a newform f ∈ Sk(N)new which is congruent to the Eisenstein eigen-
form E = [p1]+ ◦ . . . ◦ [pt]+Ek ∈ Ek(N) modulo a power r > 0 of a maximal ideal
λ ⊂ Of . If ` is the residual characteristic of λ, we obtain the bound

r ≤ ordλ(`) · v`

(
−Bk2k

t∏
i=1

(1− pi)
)
.

Proof. Let p | N be a prime. From Lemma 4.1 we know that ap(f) = −λppk/2−1.
On the other hand ap(E) = a1(UpE) and from Lemma 3.4 it follows that ap(E) = 1.
The congruence

ap(f) ≡ ap(E) (mod λr)
implies that −λppk/2−1 ≡ 1 (mod λr) and by squaring both sides we obtain equa-
tion

(4.1) 1− pk−2 ≡ 0 (mod λr).
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The form f is parabolic, so a0(f) = 0. Hence the congruence a0(E) ≡ 0 (mod λr)
holds and by Corollary 3.6 we get

−Bk2k

t∏
i=1

(1− pk−1
i ) ≡ 0 (mod λr).

We observe that 1 − pk−1
i = (1 − pk−2

i ) + pk−2
i (1 − pi). Equation (4.1) holds for

each pi and by assumption ` - N . It follows that

−Bk2k

t∏
i=1

(1− pi) ≡ 0 (mod λr).

For k > 2 we have the inequality ordλ(1− pk−1
i ) ≥ ordλ(1− pi) for each i, hence

r ≤ ordλ

(
−Bk2k

t∏
i=1

(1− pi)
)
.

�

Corollary 4.3. Let p1, . . . , pt be different prime factors of N and let k > 2. Sup-
pose we have a newform f ∈ Sk(N)new which is congruent to the Eisenstein eigen-
form E = [p1]ε1 ◦ . . . ◦ [pt]εtEk ∈ Ek(N) modulo a power r > 0 of a maximal ideal
λ ⊂ Of . We asssume that a0(E) = 0 and pi /∈ λ for every εi = −. We have the
bound for congruence exponent

r ≤ min{ min
i,εi=+

ordλ(1− pk−2
i ), min

i,εi=−
ordλ(1− pki )}.

Moreover, for every i such that εi = + we have pi /∈ λ.

Proof. We apply Lemma 4.1 to the congruence api(f) ≡ api(E) (mod λr). After
squaring both sides we get the condition

(4.2) pk−2
i ≡

{
1, gdy εi = +,
p

2(k−1)
i , gdy εi = −.

The exponent r is less or equal to ordλ(1 − pk−2
i ) when εi = +. Also r is at most

equal to ordλ(1− pki ) when εi = −, because pi /∈ λ by assumption. The congruence
(4.2) for each i such that εi = + implies that 1− pk−2

i ∈ λr. So 1− pk−2
i ∈ λ and

then pi /∈ λ. �

5. Rational congruences

We have proved in [11, §5.8] that for a prime N and a newform f ∈ S2(Γ0(N))new

with rational coefficients there exists a system of congruences

(5.1) an(f) ≡ E (mod `r)

for all n ≥ 0, E = [N ]+E2 and a rational prime ` only for triples (`, r,N) ∈
{(3, 1, 19), (3, 1, 37), (5, 1, 11), (2, 1, 17)} (only finitely many systems) and also for
(`, r,N) ∈ {(2, 1, u2 + 64) : 2 - u} (conjecturally infinitely many triples). The main
tool we use is a theorem of Katz [8, Theorem 2] and a theorem of Miyawaki [10]. In
this section we are going to discuss congruences for levels N square-free. We exploit
here a well-known theorem of Mazur on torsion of elliptic curves [9, Theorem 8].
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Lemma 5.1. Let f be a newform f ∈ S2(Γ0(N))new with rational coefficients and
N a square-free number. Suppose we have an eigenform E ∈ E2(N) and congruence
(5.1) holds for all n ≥ 0, then

(`, r) ∈ {(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (5, 1), (7, 1)}.

Proof. Coefficients of form f lie in Z, [5, Theorem 6.5.1]. For every prime q - N we
get

(5.2) aq(f) ≡ 1 + q (mod `r).

There exists an elliptic curve E over Q of conductor N such that for a prime q of
good reduction for E , aq(f) = q+ 1−|E(Fq)|, [4, Chapter II, §2.6]. By the theorem
of Katz we have that there exists a Q-isogenous curve E ′ such that E ′(Q) contains an
`r-torsion point. By the theorem of Mazur it follows that `r ∈ {2, 3, 4, 5, 7, 8, 9}. �

Due to a partial classification of elliptic curves with conductor N being a product
of two primes [12] we can discard in that case the congruences such that `r ∈ {8, 9}.

Theorem 5.2. Let p,q be two different primes. Suppose we have a newform f ∈
S2(pq)new with rational coefficients and let E be an eigenform in E2(pq). Let ` be a
prime number and r > 0 an integer such that congruence (5.1) holds for all n ≥ 0.
Then one of two conditions holds

(1) `r ∈ {2, 3, 4, 5},
(2) `r = 7 and E = [13]−[2]+E2.

Proof. From the previous lemma it follows that `r ∈ {2, 3, 4, 5, 7, 8, 9}. If `r = 8 or
`r = 9, then by a theorem of Sadek [12, Theorem 3.7,3.8] we get N = 6 but the
space S2(N) is empty, so we can discard those powers from the list. Let `r = 7.

Then by [12, Theorem 3.6] it follows that N = 26. We compute that the space
S2(26)new is of dimension 2 and spanned by the forms f1, f2 with the following
Fourier expansions

f1 = q − q2 + q3 + q4 − 3q5 − q6 − q7 − q8 − 2q9 + 3q10 + 6q11 + . . .

f2 = q + q2 − 3q3 + q4 − q5 − 3q6 + q7 + q8 + 6q9 − q10 − 2q11 + . . .

The space E2(26) has a basis made of three eigenforms [2]−[13]+E2, [13]−[2]+E2,
[2]+[13]+E2. Lemma 3.8 implies that

a2([2]−[13]+E2) = 2,
a2([13]−[2]+E2) = 1,
a2([2]+[13]+E2) = 1.

The Sturm bound is 7, cf. Theorem 6.1, so we have to compare only 7 initial
coefficient to check the desired congruence. By a direct computation we check that
f2 is congruent to [13]−[2]+E2 modulo 7. The form f1 is not congruent to any of
the given Eisenstein eigenforms modulo 7. �

Remark 5.3. If N has more than two prime factors we can find examples of con-
gruences where `r ∈ {8, 9}. In Tables 1 and 2 we present such examples.
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N N− N+ form
1 714 17 42 f9
2 1482 1 1482 f12
3 1482 19 78 f12
4 1554 1 1554 f14
5 1554 37 42 f14

Table 1. an(fi) ≡ an(EN−,N+) (mod 23), n ≥ 0, fi ∈ S2(Γ0(N))new

N N− N+ form
1 102 17 6 f3
2 210 7 30 f5
3 690 23 30 f11
4 930 31 30 f15
5 1974 329 6 f9
6 4074 97 42 f12
7 4074 1 4074 f12
8 4290 1 4290 f29

Table 2. an(fi) ≡ an(EN−,N+) (mod 32), n ≥ 0, fi ∈ S2(Γ0(N))new

6. Algorithmic search for congruences

Our main goal in this section is to describe an effective algorithm that allow
computations of congruences between cuspidal eigenforms and Eisenstein series for
a large class of square-free conductors. Our approach follows the paper of Sturm
[?] and adaptation of the Sturm’s algorithm given in [3].

Theorem 6.1. Let p1, . . . , pt be different prime numbers and k ≥ 2. Let N =
p1 · . . . · pt and f be a newform in Sk(N)new. We fix a natural number r and a
maximal ideal λ in Of . Let E be an eigenform in Ek(N). If for n ≤ k(

∏
i(pi+1))/12

the congruence
(6.1) an(f) ≡ an(E) mod λr

holds, then it holds for all n ≥ 0.

Proof. This is a simple adaptation of [3, Proposition 1]. �

In our algorithm it will be sufficient to check condition (6.1) for indices n that
are prime numbers below the Sturm bound B := k(

∏
i(pi + 1))/12.

Corollary 6.2. With the assumptions as in Theorem 6.1 suppose that for primes
n ≤ k(

∏
i(pi + 1))/12 the congruence (6.1) holds, then congruence (6.1) holds for

all natural numbers n ≥ 0.

Proof. Forms f and E are eigenforms with respect to Hecke algebra TN and they
are both normalized: a1(f) = a1(E) = 1. It follows that for coprime n,m we have
anm(f) = an(f)am(f) and the same for E instead of f . To prove the corollary it
suffices to check the congruence for indices n = qm, where q is prime such that q ≤
B. For each m we have a polynomial Pq,m ∈ Z[x] such that aqm(f) = Pm,q(aq(f))
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and aqm(E) = Pm,q(aq(E)). So if the congruence (6.1) holds for a prime index
n = q, it holds for all n = qm and also for all n ≤ B by multiplicativity of the
Fourier coefficients. We apply Theorem 6.1 to finish the proof. �

6.1. Algorithm 1. Description of the algorithm: We take as input the square-free
integer N and a number k ≥ 2. On output we print the residue characteristics of
maximal ideals λ such that there is a congruence between a newform f ∈ Sk(N)new

and an eigenform E ∈ Ek(N) modulo λr for a positive r.

Input: even number k ≥ 2, natural number t ≥ 1, tuple (p1, . . . , pt) of different
prime numbers, tuple of symbols (ε1, . . . , εt) ∈ {+,−}t.

Steps of the algorithm:
(1) If k ≥ 2 and ε1 = . . . = εt = +, then return to the output the prime factors

of the numerator of −Bk2k
∏
i(1− pi). Skip the rest of the algorithm.

(2) If k = 2 and εi = − for some i, then return to the output the prime factors
` of 1− p2

i that satisfy ` | (1− p2
j ) for all j 6= i such that εj = −. Skip the

rest of the algorithm.
(3) If k > 2 and εi = − for some i, then return to the output the prime factors

` of 1− pki that satisfy ` | (1− pkj ) for all j 6= i such that εj = − and for all
j 6= i with ` | (1− pk−2

j ) and εj = +.

Output: Sequence of prime numbers (`1, . . . , `j) such that if an(f) ≡ an(E) (mod λr)
for r > 0, then #(Of/λ) ∈ {`1, . . . , `j}. Remark: it might happen that the list will
be empty, i.e. j = 0.

Validity of the algorithm: Steps (1),(2),(3) of the algorithm cover all possibilities
for E, an eigenform in Ek(N). The validity follows from the definition of a0(E) when
ε1 = . . . = εt = + and from Corollaries 4.2, 4.3.

6.2. Algorithm 2. Description of the algorithm: For a fixed integer k ≥ 2, square-
free integer N , prime number ` and a fixed eigenform E ∈ Ek(N) the algorithm
checks for which newforms f ∈ Sk(N) there is a congruence between f and E
modulo λr where the residue characteristic of ideal λ is ` and r > 0 and maximal
possible.

Input: even number k ≥ 2, N > 1 square-free number, ` a prime number and
E ∈ Ek(N) an eigenform

Steps of the algorithm:
(1) Check whether a0(E) is 0. If yes, then proceed to Step 2. If no, then check

if v`(a0(E)) > 0. If yes, then go to Step 2. If no, then finish the algorithm.
(2) Compute subsets Ci of newforms in Sk(N) such that each two element in

Ci are Galois conjugate
(3) For each set Ci pick one representative and create a set FN,k of those

representatives for all i.
(4) Compute the Sturm bound B = (k/12)[SL2(Z) : Γ0(N)].
(5) For each form f ∈ FN,k compute the coefficient field Kf .
(6) For each f ∈ FN,k create a set S`,f that is made of prime ideals that appear

in factorization of `Of .
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(7) For each element f ∈ FN,k and λ ∈ S`,f compute the number
rλ = min {ordλ (aq(f)− aq(E)) | q ≤ B} .

The minimum runs over prime numbers q. If rλ > 0, then return to the
output a triple (f, λ, rλ)

Output: Set of triples (f, λ, r) such that
an(f) ≡ an(E) (mod λr)

for all n ≥ 0 and if for some s > 0 we have
an(f) ≡ an(E) (mod λs)

for all n ≥ 0, then s ≤ r. Remark: it might happen that the list will be empty.
Validity of the algorithm: In Step 1 we check if the congruence (6.1) is possible.
Step 2 amounts to a finite number of computational steps for a fixed level N and
weight k. Moreover we can represent each newform by a finite number of bits (e.g.
by the use of modular symbols representation). Number rλ in Step 6 satisfies the
output condition because of Corollary 6.2. Since N is square-free the constant B
is equal to the constant from Corollary 6.2.

7. Numerical data

We discuss in this section the computational data that was gathered while run-
ning Algorithms 1 and 2. We performed a check that includes weights k between
2 and 24 and square-free levels N up to 4559. More precise bounds are presented
in Table 3. Our main computational resource was a cluster Gauss at the Univer-
sity of Luxembourg maintained by Prof. Gabor Wiese. Computer has 20 CPU
units of type Inter(R) Xeon(R) CPU E7-4850 @ 2.00 GHz and around 200 GB of
RAM memory. We used the computer algebra package MAGMA [2] and the set
of instructions MONTES [7] which greatly enhances the efficiency of computations
performed on number fields with large discriminants.

k 2 4 6 8 10 12 14 16 18 20 22 24
N ≤ 4559 922 302 202 193 102 94 94 94 94 94 94

Table 3. Weight k and corresponding maximal level N .

7.1. Description of data in tables. Let fi be as usual a newform in Sk(N)new

where k ≥ 2 and N is square-free. Index i is associated to the particular form with
the help of algorithm presented in [4, Chapter IV], described in details in MAGMA
manual 1. Number d will denote the degree of extension Kf over Q. We have a
prime ideal λ ⊂ Ofi of residue characteristic `. Let e denote the ramification degree
ordλ(`) and f the degree of residue fields extension [(Ofi/λ : F`)]. We consider the
Eisenstein eigenform EN−,N+ ∈ Ek(N) with N = N−N+ such that
(7.1) an(fi) ≡ an(EN−,N+) (mod λr)

1http://magma.maths.usyd.edu.au/magma/handbook/text/1545

http://magma.maths.usyd.edu.au/magma/handbook/text/1545
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for all n ≥ 0. We assume that r ≥ 0 and is maximal in the sense, that there is no
congruence between those two forms with exponent greater than r. Number m will
denote a maximum over s such that satisfy simultaneous congruences

apj (fi) ≡ apj (EN−,N+) (mod `s), 1 ≤ j ≤ t,
a0(fi) ≡ a0(EN−,N+) (mod `s).

Observe thatm depends on the choice of N , N+, N−,fi and λ. An upper bound for
the exponent r is the productm·e. In general the boundm·e might be smaller than
the upper bound computed in Corollaries 4.2, 4.3. We also put specific labels to
indicate different prime ideals λ that occur in the factorization of `Ofi . This labels
are described in MONTES package documentation2. So in the column labeled by
λ we will use notation λj to denote a specific prime ideal with respect to MONTES
labeling. Similarly in the column called ”form” we will write fi to denote specific
newforms that will appear.
Example 7.1. In Table 4 we describe an example of row of data in our congruence
database. We read from it that a newform f1 ∈ S2(2651)new is congruent to the
Eisenstein series E1,2651 modulo a power λ2

1, where the ideal λ1 is of residue char-
acteristic 5 and its ramification e above ` = 5 equals 2. Field degree [Kf1 : Q] is 35
and Of1/λ1 = F5. Theoretical upper bound for r is m · e = 4 but our congruence
appears only with the maximal exponent r = 2.

N N− N+ k ` m form λ r e f d
2651 1 2651 2 5 2 f1 λ1 2 2 1 35

Table 4. Typical row of data

Example 7.2. In Table 5 we present for each pair (r, `) one congruence for which
r is maximal in the whole range described in Table 3. The choice of k is random
if we had more than one pair (r, `) at our disposal. Moreover, we sort the data by
the descending value of r.
Example 7.3. In Table 6 we describe some examples of congruences that satisfy
the non-trivial bound r ≤ e with m > 1. We refer to Corollary 8.2 for a precise
statement of our observation.

8. Summary of computational results

We summarize in this paragraph large numerical computations that established
the existence of congruences for square-free levels N and weights k as described in
Table 3. We will say that there exists a congruence that satisfies W if we can find
a weight k and level N such that there exists a newform f ∈ Sk(N)new and an
Eisenstein eigenform E ∈ Ek(N) that satisfy (7.1) for an ideal λ ∈ Of and positive
integer r. Values of r, d, e, f,N−, N+, ` and m associated with this congruence will
depend on the condition W.
Corollary 8.1. Let N be a square-free number depending on the weight as described
in Table 3. In Table 7 we present the number of different congruences of type (7.1)
that can be found in the presented range. In the column denoted by r ≥ 0 we count
the number of pairs (f, λ) returned by Algorithm 2.

2http://www-ma4.upc.edu/~guardia/MontesAlgorithm.html

http://www-ma4.upc.edu/~guardia/MontesAlgorithm.html
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N N− N+ k ` m form λ r e f d
1 2 2 1 22 2 10 f1 λ1 8 1 1 1
2 2159 127 17 2 2 7 f1 λ1 7 1 1 56
3 78 78 1 8 2 3 f1 λ1 6 2 1 2
4 34 2 17 10 2 4 f1 λ1 5 2 1 2
5 1459 1 1459 2 3 5 f1 λ1 5 1 1 71
6 94 2 47 18 2 7 f1 λ2 4 1 1 18
7 146 2 73 6 3 2 f1 λ3 4 2 1 9
8 78 2 39 22 2 3 f1 λ4 3 1 1 5
9 163 1 163 10 3 4 f1 λ1 3 1 1 62
10 443 443 1 4 5 4 f1 λ1 3 1 1 60
11 1373 1 1373 2 7 3 f1 λ1 3 1 1 60
12 2663 1 2663 2 11 3 f1 λ2 3 1 1 132
13 239 239 1 4 13 4 f1 λ1 3 1 1 37

Table 5. Congruences that satisfy r > 2 and m > 1, one for each
pair (r, `)

Corollary 8.2. For (N, k) from range in Table 3 there exists 96 congruences that
satisfy e > 1, m > 1 and ` > 3. Beside the cases described in Table 8 we have the
bound r ≤ e.

Remark 8.3. Corollary 8.2 extends similar computations performed in [11] for prime
levels N and weight k = 2. It was checked there that for primes N ≤ 13009 the
property r ≤ e holds for all ` > 3 and e > 1. This is an open question if there are
infinitely many such congruences for all possible ranges of N and k.

Corollary 8.4. Let k = 2. For N ≤ 4559 square-free and for any d ≤ 222 we
found congruences (7.1) if d /∈ D where

D = {169, 175, 178, 192, 197, 204, 207, 208, 211,
214, 215, 216, 217, 218, 219, 220, 221}.

Remark 8.5. In [6] the authors study the existence of newforms f with large degree
of coefficient field Kf . Computations from Corollary 8.4 and Table 9 suggest that
we can both find newforms that have large degree of Kf and they are congruent to
an Eisenstein eigenform. In Figure 1 we show that the growth of d as a function
of least N is roughly a linear function. The way we present data in Table 9 is as
follows: we assume N− = 1, in the i-th row we present a congruence such that
d ≥ 10i for the least possible N . All values of N that we found are prime numbers.

Corollary 8.6. For k = 2 and level N less or equal to 4559 there exist a congruence
for any level except N = 13, 22 for which the space S2(N)new is zero.

Corollary 8.7. For k = 2 and N− > 1 there exists 54077 congruences for levels
N ≤ 4559 and 8860 congruences for N− = 1 and levels N ≤ 4559.

Remark 8.8. In several cases described in the above corollary the assumptions of [14,
Theorem 4.1.2] are satisfied. We obtain in that cases congruence for coefficients ap
with p | N which is not assumed in [14, Theorem 4.1.2]. Moreover, some examples
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N N− N+ k ` m form λ r e f d
1 31 31 1 10 5 2 f1 λ3 1 2 1 13
2 33 11 3 12 11 2 f1 λ4 1 2 1 6
3 33 11 3 12 11 2 f1 λ4 1 2 1 5
4 35 5 7 6 5 2 f1 λ1 1 2 1 2
5 35 5 7 6 5 2 f1 λ1 1 2 1 4
6 35 35 1 8 5 2 f1 λ2 1 2 1 5
7 35 35 1 12 5 2 f1 λ3 1 2 1 4
8 35 35 1 12 5 2 f1 λ3 1 2 1 6
9 35 5 7 14 5 2 f1 λ3 1 2 1 6
10 35 5 7 14 5 2 f1 λ3 1 2 1 8
11 35 35 1 16 5 2 f1 λ3 2 3 1 7
12 35 35 1 16 5 2 f1 λ4 1 2 1 9
13 35 35 1 16 5 2 f1 λ3 2 3 1 9
14 55 5 11 12 5 2 f1 λ2 1 2 1 11
15 55 5 11 12 5 2 f1 λ2 1 2 1 8
16 79 79 1 6 7 2 f1 λ1 1 2 1 19
17 79 79 1 12 7 2 f1 λ1 1 2 1 33
18 101 101 1 4 5 2 f1 λ1 1 3 1 9
19 101 101 1 8 5 2 f1 λ2 1 3 1 26
20 101 101 1 12 5 2 f1 λ2 1 3 1 42
21 107 107 1 4 5 2 f1 λ1 1 2 1 16
22 107 107 1 8 5 2 f1 λ1 1 2 1 28
23 133 7 19 8 7 3 f1 λ3 1 3 1 16
24 133 7 19 8 7 3 f1 λ3 1 3 1 16

Table 6. Exemplary congruences that satisfy conditions: e > 1,
m > 1, ` > 3

k r ≥ 0 r > 0 m · e = r > 0 m · e > r > 0
2 277447 62937 38805 24132
4 64232 13922 9208 4714
6 17300 3629 2475 1154
8 10755 2149 1517 632
10 9248 1483 1106 377
12 5738 1055 787 268
14 5276 1020 756 264
16 6010 1113 817 296
18 6995 1235 922 313
20 10735 1914 1428 486
22 8853 1425 1025 400
24 10359 1555 1153 402

Table 7. Number of congruences of type (7.1) for fixed values of k.

of previous corollary suggest that the assumptions of [14, Theorem 4.1.2] can be
made weaker.
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N N− N+ k ` m forma λ r e f d
1 2495 499 5 2 5 3 f1 λ1 3 2 1 55
2 3998 1999 2 2 5 3 f1 λ1 3 2 1 44

Table 8. Congruences that satisfy e > 1, m > 1, ` > 3 i r > e.

N N− N+ k ` m forma λ r e f d
1 131 1 131 2 13 1 f1 λ1 1 1 1 10
2 311 1 311 2 5 1 f1 λ1 1 1 1 22
3 479 1 479 2 239 1 f1 λ3 1 1 1 32
4 719 1 719 2 359 1 f1 λ2 1 1 1 45
5 839 1 839 2 419 1 f1 λ1 1 1 1 51
6 1031 1 1031 2 5 1 f1 λ1 1 1 1 60
7 1399 1 1399 2 233 1 f1 λ2 1 1 1 71
8 1487 1 1487 2 743 1 f1 λ1 1 1 1 80
9 1559 1 1559 2 19 1 f1 λ2 1 1 1 90
10 1931 1 1931 2 5 1 f1 λ1 1 1 1 101
11 2111 1 2111 2 5 1 f1 λ2 1 1 1 112
12 2351 1 2351 2 5 2 f1 λ1 1 1 1 123
13 2591 1 2591 2 5 1 f1 λ2 1 1 1 136
14 2879 1 2879 2 1439 1 f1 λ1 1 1 1 148
15 2903 1 2903 2 1451 1 f1 λ2 1 1 1 150
16 2999 1 2999 2 1499 1 f1 λ1 1 1 1 161
17 3359 1 3359 2 23 1 f1 λ1 1 1 1 174
18 3659 1 3659 2 31 1 f1 λ1 1 1 1 181
19 3671 1 3671 2 5 1 f1 λ1 1 5 1 193
20 3911 1 3911 2 5 1 f1 λ1 1 2 1 202
21 4079 1 4079 2 2039 1 f1 λ2 1 1 1 212
22 4391 1 4391 2 5 1 f1 λ4 1 1 1 222

Table 9. Selected congruences sorted by the degree d.

Corollary 8.9. Let (N, k) be a pair of integers that fit into the range of Table 3.
We present in Table 10 number of corresponding congruences (n.c.) with f > 2.

k 2 4 6 8 10 12 14 16 18 20 22 24
n.c. 993 177 20 4 0 0 0 2 4 2 0 0

Table 10. Weight k and number of congruences that satisfy f > 2.
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Figure 1. Growth of degree d as a function of least level N for
data from Table 9.

Corollary 8.10. Let k = 2 and N ≤ 4559. There are congruences for prime
characteristic ` ≤ 2273 except for primes ` in the set
{353, 389, 457, 463, 523, 541, 569, 571, 587, 599, 613, 617, 631, 643, 647, 677, 701,
733, 757, 769, 773, 787, 797, 821, 823, 827, 839, 857, 859, 863, 881, 887, 907, 929,

941, 947, 971, 977, 983, 991, 1021, 1051, 1061, 1091, 1097, 1109, 1117, 1151,
1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1231, 1237, 1249, 1259,
1277, 1279, 1283, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367,
1373, 1381, 1399, 1423, 1427, 1429, 1433, 1447, 1453, 1459, 1471, 1483, 1487,
1489, 1493, 1523, 1531, 1543, 1549, 1553, 1567, 1571, 1579, 1597, 1607, 1609,
1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709,
1721, 1723, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1823, 1831,
1847, 1861, 1867, 1871, 1873, 1877, 1879, 1907, 1913, 1933, 1949, 1951, 1979,
1987, 1993, 1997, 1999, 2011, 2017, 2027, 2029, 2053, 2081, 2083, 2087, 2089,
2099, 2111, 2113, 2131, 2137, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221,

2237, 2239, 2243, 2251, 2267, 2269}.

Corollary 8.11. For N ≤ 4559 and k = 2 there exist 30 congruences that satisfy
e = 17 and ` = 2. In that range there is no congruence such that the ramification
exponent e is larger than 17.

Corollary 8.12. Let (N, k) be the numbers from the range in Table 3. Then in the
described ranges there is an appropriate number of congruence (n.c.) that satisfy
condition ` | N . Values are presented in Table 11
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