Bartosz Naskręcki

Personal Data

Date of Birth: 11 May 1986
Place of Birth: Poznań, Poland
E-mail: nasqret@gmail.com
Address: Collegium Mathematicum, Building B Uniwersytetu Poznańskiego 4, 61-614 Poznań
Nationality: Polish

Employment

since Oct $2014 \mid$ Assistant professor at Adam Mickiewicz University
2016-2017 Research Associate at University of Bristol
2014-2016 Postdoctoral Research Fellow at Universität Bayreuth

Education

2010-2014 \mid Ph. D. student at Adam Mickiewicz University (AMU), Faculty of Mathematics and Computer Science (Scholarship Funded by EU)

Jun 2010 M. Sc., Faculty of Mathematics and Computer Science, AMU
2005-2010 M. Sc. Programme in Mathematics at AMU
2002-2005 VIII Secondary School in Poznań, mathematical and computer science profile

Research Experience

2013-2015 \mid National Science Centre research grant PRELUDIUM "Formy modularne i rangi krzywych eliptycznych.", 2012/05/N/ST1/02871
2010-2014 Ranks in families of elliptic curves and modular forms, Ph.D. Thesis
Advisor: Professor Wojciech Gajda
2009-2010 On a certain diophantine equation, M.Sc. Thesis
Advisor: Professor Wojciech Gajda

Publications

1. The Euler characteristic as a basis for teaching topology concepts to crystallographers, (with Zbigniew Dauter and Mariusz Jaskólski), Journal of Applied Crystallography, (2022), Vol. 55, 154-167
2. Diophantine triples and K3 surfaces, (with Matija Kazalicki), Journal of Number Theory (2022), Vol. 236, 41-70
3. A topological proof of the modified Euler characteristic based on the orbifold concept, (with Zbigniew Dauter and Mariusz Jaskólski), Acta Crystallographica Section A: Foundations and Advances (2021), Vol.7, No. 4, 317-326
4. Arithmetic proof of the multiplicity-weighted Euler characteristic for symmetrically arranged space-filling polyhedra, (with Zbigniew Dauter and Mariusz Jaskólski), Acta Crystallographica Section A: Foundations and Advances (2021), Vol.7, No. 2, 126-129 5. Arithmetic and geometry of a K3 surface emerging from virtual corrections to DrellYan scattering, (with Marco Besier, Dino Festi and Michael Harrison), Communications in Number Theory and Physics (2020), Vol. 14, No. 4, 863-911
5. Primitive divisors of elliptic divisiblity sequences over function fields with constant j-invariant, (with Marco Streng), Journal of Number Theory (2020), Vol.213, 152-186
6. The generalized Fermat equation with exponents 2, 3, n (with Nuno Freitas and Michael Stoll), Compositio Mathematica, Vol. 156 (1) (2020), 77-113
7. On higher congruences between cusp forms and Eisenstein series II, Notes from the International Autumn School on Computational Number Theory: Izmir Institute of Technology 2017, Birkhäuser (2019), 331-353
8. Divisibility sequences of polynomials and heights estimates, New York J. Math. 22 (2016) 989-1020.
9. Distribution of Mordell-Weil ranks of families of elliptic curves, Banach Center Publications 108 (2016), 201-229.
10. On higher congruences between cusp forms and Eisenstein series, in volume Computations with Modular Forms, Springer, Contributions in Mathematical and Computational Sciences, 6 (2014) 257-277.
11. Mordell-Weil ranks of families of elliptic curves associated to Pythagorean triples, Acta Arithmetica, 160, No. 2 (2013), 159-183.
12. Infinite family of elliptic curves of rank at least 4, Involve, 3, No. 3 (2010), 297-316.

Preprints 14 . Common valuations of division polynomials, (with Matteo Verzobio), submitted
15. Explicit equations of 800 conics on a Barth-Bauer quartic, submitted
16. Second moments and the bias conjecture for the family of cubic pencils, (with Matija Kazalicki), submitted
17. Geometry of the del Pezzo surface $y^{2}=x^{3}+A m^{6}+B n^{6}$, with Julie Desjardins, submitted
18. On a certain hypergeometric motive of weight 2 and rank 3, submitted
19. Mordell-Weil ranks of families of elliptic curves parametrized by binary quadratic forms, submitted

Prizes And Awards

2022 Diamenty Krystalografii, PAN Award in category "Teoria, metodyka i dydaktyka krystalografi"
2017 STEM Bronze Award for Mathematical Sciences, UK Parliament, London
2014 Young Mathematicians Prize of Polish Mathematical Society
2013 Scholarship of Adam Mickiewicz University Foundation
2010 J. Marcinkiewicz Award for the Outstanding Undergraduate Mathematical Paper (Distinction)
2010 Medal for Outstanding Graduates "Sapere Aude", Adam Mickiewicz University
2009 Scholarship of Kulczyk Family Fund, Adam Mickiewicz University
2009 Ministry of Science and Higher Education Award (scholarship) for scientific achievements
2008 Honourable Mention, International Mathematics Competition, Blagoevgrad, Bulgaria
2008 Ministry of Science and Higher Education Award (scholarship) for scientific achievements
2007 Third Prize, International Mathematics Competition, Blagoevgrad, Bulgaria
2007 Ministry of Science and Higher Education Award (scholarship) for scientific achievements

Selected Talks

Jul 2022
Topological and combinatorial methods in crystallography, Applied Topology 2022, Będlewo, Poland
Jun 2022 Higher moments of elliptic curves, Algebraic Geometry Group Seminar, Milan, Italy
May 2022
Dec 2019

Sep 2019
Jun 2019 Hypergeometric differential equations and hypergeometric motives, Representation Theory XVI, Inter-University Centre, Dubrovnik, Croatia
Jun 2019 Discussion panel on higher congruences Eisenstein ideal and Iwasawa theory, Morningside Center of Mathematics, Beijing, China
Jun 2018 Point counts on elliptic surfaces inspired by the theory of motives, ALANT 5, Bedlewo, Poland
Jun 2018 Elliptic surfaces, Lectures on computational aspects of algebraic geometry, Zagreb, Croatia
May 2018 Motivic decomposition of K3 surfaces with high Picard rank, Research Group: Motives of Calabi-Yau manifolds, Kraków, Poland
Apr 2018 Elliptic and hyperelliptic realisations of low degree hypergeometric motives, Periods in Number Theory, Algebraic Geometry and Physics, Bonn, Germany
Sep 2017 Introduction to Computer Algebra System, Izmir Autumn School on Computational Number Theory, Izmir, Turkey
Oct 2016 Generalized Fermat's equation of type (2,3,n), Linfoot seminar, University of Bristol, UK

Nov 2015
Oct 2015
Sept 2014
Jun 2014
Jul 2013
Jun 2013
May 2013
Mar 2013
Jun 2012
Jul 2011
Sep 2010
Nov 2009
Sep 2009
Sep 2008

Zeta functions, Weil conjectures and how to apply them, Workshop on Modern Applied Mathematics PK 2015, Kraków, Poland
Generalized Fermat equations $x 2+y 3=z p-a$ progress report, Jahrestagung SPP 1489, Osnabrück, Germany
Mordell-Weil ranks in families of elliptic curves parametrized by binary quadratic forms, DMV-PTM Joint Meeting, Poznań, Poland
Mordell-Weil ranks in families of elliptic curves parametrized by binary quadratic forms, ALANT 2014, Będlewo, Poland
Mordell-Weil ranks of families of elliptic curves associated to Pythagorean triples, Journées Arithmétiques 2013, Grenoble, France
On higher congruences between cusp forms and Eisenstein series, Workshop on Galois representations modulo prime powers, Luxembourg
Mordell-Weil ranks of families of elliptic curves associated to Pythagorean triples, Heilbronn seminar, Bristol, UK
On higher congruences between cusp forms and Eisenstein series, "Explicit Methods for Modular Forms", Warwick, UK
Mordell-Weil ranks of families of elliptic curves associated to Pythagorean triples, Algebraic and Arithmetic Geometry, Kraków, Poland "Algebra", Kraków, Poland
A computer can do more than the mathematician?, 13th International Workshop for Young Mathematicians "Logic and Foundations of Mathematics", Kraków, Poland Infinite family of elliptic curves, Workshop on Ranks, Faculty of Mathematics and Computer Science, AMU, Poznań
Enchained in Markov Chains, 12th International Workshop for Young Mathematicians "Probability Theory and Statistics", Kraków, Poland
Elliptic curves cryptography, 11th International Workshop for Young Mathematicians "Number Theory", Kraków, Poland

Workshops and Conferences

May 2017
Mar 2017
Sep 2016
Jun 2016
May 2016
Apr 2016
Mar 2016
Nov 2015
Nov 2014
Sept 2014
Jun 2014
Oct 2013
Jul 2013
Jul 2013
Jun 2013
Mar 2013
Jun 2012
Feb 2012
Aug 2011
Jun 201
Mar 2011

Modular forms are everywhere, Bonn, Germany
New Trends in Arithmetic and Geometry of Algebraic Surfaces, Banff, Canada
Recent Developments on Elliptic Curves, Oxford, UK
Arithmetic statistics and the Cohen-Lenstra heuristics Warwick, UK
LMFDB Workshop, San Jose, California, USA
Explicit Methods in Number Theory: Conference in Honour of John Cremona's 60th Birthday, Warwick, UK
British Mathematical Colloqium, Bristol, UK
Workshop on Modern Applied Mathematics PK 2015, Kraków, Poland
Workshop on Galois representations, Luxembourg
DMV-PTM Joint Meeting, Poznań, Poland
Alant 2014, Będlewo, Poland
Kosmos Summer School: MZV in Mathematics and Physics, Berlin, Germany
Sage Days: Algorithms in Arithmetic Geometry, Leiden, Netherlands
Journées Arithmétiques 2013, Grenoble, France
Workshop on Galois representations modulo prime powers, Luxembourg
Explicit Methods for Modular Forms, Warwick, UK
6th European Congress of Mathematics, Kraków, Poland
Winter School on Galois Theory, University of Luxembourg, Luxembourg
Summer School and Conference "Computations with Modular Forms 2011", University of Heidelberg, Heidelberg, Germany
Abelian Varieties $\& \mathcal{G}$ Galois Actions, Adam Mickiewicz University, Poznań, Poland
Spring School on higher dimensional class field theory, University of Mainz, Mainz, Germany

Mar 2011 School and Conference on Modular Forms and Mock Modular Forms and their Applications in Arithmetic, Geometry and Physics, ICTP, Trieste, Italy
Feb 2011
Jan 2011
Jun 2010
Feb 2010 Advanced Course on Arithmetic Geometry for Function Fields of Positive Characteristic, Universitat Autonoma de Barcelona, Barcelona, Spain
Oct 2009
Advanced Course on Shimura Varieties and L-functions, Universitat Autonoma de Barcelona, Barcelona, Spain
Jun 2009 Clay Institute Summer School 2009 "Galois representations", Honolulu, Hawaii, USA

ExpERIENCE

2022 Teaching grant (55k PLN) - Jupyter Notebook based full course materials on Introduction to Mathematics for Computer Science Students
2021 Rectors Fund Grant for developing crystallographic methods (20k PLN)
2021 Editing Jupyter Notebooks for AITECH Project (Adam Mickiewicz University), approx. 2000 A4 PDF pages generated with automated process and unique conversion procedure
2016 Contributions to L-functions Modular Forms Database project, mod ℓ modular forms section (joint work with Samuele Anni and Anna Medvedovsky).
2008 Coauthor of interactive presentation module for Calculus courses (Computer Science programme) created in Mathematica system:
Module 1 (pl), Module 2 (pl)
Wolfram
Demonstration
Project applets:

1. Motion of a Simple Pendulum with Damping
from The Wolfram Demonstrations Project
2. Work in an Attractive Inverse-Square Field
from The Wolfram Demonstrations Project
3. Driven Damped Oscillator with Resonance Effect
from The Wolfram Demonstrations Project
4. Numerical Integration using Rectangles, the Trapezoidal Rule, or Simpson's Rule from The Wolfram Demonstrations Project

Teaching Experience

Teaching at Adam Mickiewicz University:
2017-... \mid Introduction to Mathematics, Logic and Set Theory, Computer Algebra Systems, Cryptography with Elements of Algebra, Protection of Intellectual Property, Mathematical Foundations of Machine Learning and Cybersecurity
2011-2015 Computer assisted mathematics, Introduction to algebra and number theory, Introduction to mathematics, Linear algebra, Galois theory
Teaching at University of Bristol:
Fall/Winter \mid Maths Single Honours Tutorial (Analysis and Foundations and Proof) 2016-2017

Research statement

My research focuses mainly on the arithmetic aspects of algebraic geometry. This is a varied field with many applications, even outside of mathematics. The most important work in my list is [7]. We prove in this paper the generalized Fermat theorem for three different exponents $2,3, n$ with $n=11$ and some
partial information about higher n. This work is only the second known case of application of the modularity method to the equation of type $x^{p}+y^{q}+z^{r}=0$ with three different exponents (p, q, r).

Papers [6] and [9] address the question of existence of a uniform Zgimondy bound on the elliptic divisibility sequences. The topic of divisibility sequences is well-known and full of interesting results about Fibonacci and Lucas sequences. In my work I address the classic questions in the function field context. The first paper [5] proves the first known uniform bound which works for most elliptic curves with a fixed point. This is a breakthrough which allows to completely characterise the Zsigmondy bound in practice. Our paper [6] address the search of optimal Zsigmondy bounds (least possible) in the constant j-invariant case.

Papers [10], [12], [13],[17] and [19] study Mordell-Weil groups of various elliptic curves over function fields. I provide in each paper a different application of the general theory of Mordell-Weil lattices. The strongest application comes in the paper [19] which explains how to detect new examples of del Pezzo surfaces of degree 1 with a Zariski dense set of rational points.
Papers [2], [5] and [18] are related by the use of the Shioda-Inose structures of K3 surfaces . Our paper [5] addresses a very difficult question of non-rationality of a certain master integral related to the Drell-Yan scattering in quantum physics. We study deeply all the geometric and arithmetic properties of the surface and speculate about further physical applications of these. In the paper [18] we construct realizations of the so-called hypergeometric motives. This is a difficult and rather technical construction which allows one to prove some interesting identities over finite fields.

Papers [8] and [11] are dedicated to the study of congruences between certain modular forms. Apart from some theoretical results I have constructed an extensive database of such congruences which allowed other researchers to verify some auxiliary claims.

In papers [1], [3] and [4] are a study of certain new numerical invariants of crystallographic lattices. These papers are on the boundary between mathematics and crystallography and have strong potential for applications in crystallography and chemistry.

