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Abstract. In this note we compute a constant N that bounds the number of
non–primitive divisors in elliptic divisibility sequences over function fields of any
characteristic. We improve a result of Ingram–Mahé–Silverman–Stange–Streng,
2012, and we show that the constant can be chosen independently of the specific
point and to some extent of the specific curve, as predicted in loc. cit.

1. Introduction

Let E be an elliptic curve over the function field K(C) of a smooth projective
curve C of genus g(C) over an algebraically closed field K. Let S be the Kodaira–
Néron model of E, i.e. a smooth projective surface with a relatively minimal elliptic
fibration π : S → C with a generic fibre E and a section O : C → S, cf. [23, §1], [26,
Chap. III, §3]. We always assume that π is not smooth. Let P be a point of infinite
order in the Mordell–Weil group E(K(C)). To formulate the main problem we
define a family of effective divisors DnP ∈ Div(C) parametrized by natural numbers
n. For each n ∈ N the divisor DnP is the pullback of the image O of section O
through the morphism σnP : C → S induced by the point nP

DnP = σ∗nP (O).
We call such a family an elliptic divisibility sequence. We say that the divisor DnP is
primitive if the support of DnP is not completely contained in the sum of supports
of the divisors DmP for all m < n. Otherwise we say that the divisor DnP is
non–primitive.

The study of elliptic divisibility sequences dates back to the work of Morgan Ward
[34, 35]. Silverman in [27] established that for elliptic divisibility sequences over Q
the number of non–primitive divisors is finite. This result was investigated further by
several authors [4, 5, 10, 12, 15, 29]. In another direction Streng [31] generalized the
primitive divisor theorems for curves with complex multiplication. Several authors
studied also the question of existence of perfect powers in divisibility sequences, cf.
[3, 6, 20]. In the context of elliptic divisibility sequences over function fields the
finiteness of the set of non–primitive divisors for elliptic curves over Q(t) was proved
in [3]. In parallel such questions have been studied also for Lucas sequences [7]. In
[28] common divisors of two distinct elliptic divisibility sequences were studied. For
a general function field of a smooth curve in characteristic zero, the first general
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theorem about primitive divisors in elliptic divisibility sequences was proved in [11].
The authors of [11] ask the following question: For a fixed elliptic curve E over a
function field and a point P of infinite order is it possible to give an explicit upper
bound for the value of a constant N = N(E,P ) such that for all n ≥ N the divisor
DnP in the elliptic divisibility sequence is primitive?

Such a bound N(E,P ) always exists by [11, Thm. 5.5] but the proof does not
indicate how to make the bound explicit or uniform with respect to E and P .

In this note we investigate the existence of uniform bounds for the number
of non–primitive divisors. In Section 2 we formulate our main theorems. There
is a considerable difference between the formulation and proof of theorems in
characteristic zero and positive so we do state them separately. In Section 3 we
establish necessary notation that will be used through the paper. In Section 4 we
gather basic facts about the canonical height function and the relation between
the discriminant divisor of an elliptic curve and the Euler characteristic of the
attached elliptic surface. The crux is the explicit recipe for the height function due
to Shioda [23], that will be used in critical places to get the estimate on the number
of non–primitive divisors in the divisibility sequence. Section 5 contains a couple of
properties of arithmetic functions used in the proofs of main theorems. In Section
6 we discuss the analogue of Lang’s conjecture on canonical height of points over
function fields. We use the results of [9] and [19] to produce effective bounds for
fields of arbitrary characteristic.

In Section 7 we explain a relatively simple proof of theorems formulated for
function fields of characteristic 0. The main idea of the proof is to combine the
explicit approach to height computations of [23] with the bounds for minimal heights
of points proved in [9]. A crucial step in the proof relies on the formula that relates
the Euler characteristic χ(S) to the sum of numbers that depended on the Kodaira
types of singular fibres of π.

In Section 8 we prove the main theorems in positive characteristic. The main
steps of the proof are similar to the characteristic 0 case, however there are significant
differences due to the presence of inseparable multiplication by p map. In the last
section we gather several examples for which we compute explicitly the exact number
of non–primitive divisors. We also explain how the main theorems fail in positive
characteristic p for elliptic curves with p–map of inseparable degree p2.

2. Main theorems

Our convention is to work with function fields K(C) over algebraically closed
field K of constants. However, the main theorems can be formulated for a smooth,
projective geometrically irreducible curve C over a field K that is a number field or
a finite field. In such a case, an elliptic curve E is defined over the field K(C) and
the elliptic surface π : S → C attached to E/K(C) is a regular scheme S over K
with a proper flat morphism π into C and such that its base change to the algebraic
closure K is an elliptic surface in the usual sense. Every point v ∈ C(K) corresponds
to a normalized valuation of K(C). We say that v is a primitive valuation of DnP

when v is contained in the support of DnP and does not belong to the support
of any DmP for m < n, cf. [11, Def. 5.4]. In this terminology we can say that
DnP is primitive if and only if it has a primitive valuation and similarly DnP is
non–primitive whenever it does not have a primitive valuation.
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From now on we assume that K = K, unless otherwise specified. Let E be an
elliptic curve over the field K(C) with at least one fibre of bad reduction and let
P be a point of infinite order in E(K(C)). Let π : S → C be an elliptic surface
attached to E. Consider a divisibility sequence {DnP }n∈N.

Theorem 2.1. Let K(C) be a field of characteristic 0. There exists a constant
N = N(g(C)) which depends only on the genus of C, such that for all n ≥ N the
divisor DnP has a primitive valuation.

Theorem 2.2. Let K(C) be a field of characteristic 0. There exists a constant
N = N(χ(S)) which depends only on the Euler characteristic of surface S, such
that for all n ≥ N the divisor DnP has a primitive valuation.

Proofs of both theorems are presented in Section 7.
Now let us assume that p = charK(C) ≥ 5. Let pr be the inseparable degree

of the j–map of E if j is non–constant, otherwise we put 1. Let us assume that
the multiplication by p–map has inseparable degree p. We say that E is tame
when locally at all places the valuation of the leading term of the formal group
homomorphisms [̂p] is less than p. Otherwise we say that E is wild, cf. Definition 8.3.
Both assumptions imply that E is ordinary or in other words that it has ordinary
reduction at all places, cf. Section 8.

Theorem 2.3 (Theorem 8.11). Assume that E is ordinary and tame. There exists
an explicit constant N = N(g(C), p, r) which depends only on the genus of C, p and
r such that for all n ≥ N the divisor DnP has a primitive valuation.

Theorem 2.4 (Theorem 8.13). Let E be an elliptic curve defined over K(C) of
characteristic p > 3 with field of constants K = Fq, q = ps. Let E be ordinary and
wild. There exists an explicit constant N = N(g(C), χ(S), p, r, s) which depends only
on the genus of C, Euler characteristic χ(S), p, r and s such that for all n ≥ N the
divisor DnP has a primitive valuation.

When the multiplication by p map is of inseparable degree p2 we can find examples
of curves with infinitely many non–primitive divisors in the divisibility sequence.
They are discussed in Section 9.

3. Notation

• χ(S) – the Euler characteristic χ(S,OS) of a surface S
• g(C) – the genus of a curve C
• K(C) – the function field of a curve C over a field of constants K; the field
K will usually be algebraically closed, unless otherwise specified

• E – an elliptic curve over K(C)
• j – the j-invariant of E
• ∆E – the minimal discriminant divisor of E
• ĥE(P ) – the canonical height of a point P
• hK(C)(E) – the height of E defined to be hK(C)(E) = 1

12 deg ∆E

• {DnP }n∈N – a divisibility sequence attached to a point P

4. Preliminaries

We will use the notation similar to that in [23]. By 〈·, ·〉 : E(K(C))×E(K(C))→
Q we denote the symmetric bilinear pairing on E(K(C)) which induces the structure
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of a positive–defined lattice on E(K(C))/E(K(C))tors, cf. [23, Thm. 8.4]. The
pairing 〈·, ·〉 induces the height function P 7→ 〈P, P 〉 which corresponds to the
canonical height. For a point P ∈ E(K(C)) we denote by P the image of its
associated section σP : C → S in the given elliptic surface model. By C1.C2 we
denote the intersection pairing of two curves C1, C2 lying on S. We denote by G(Fv)
the group of simple components of the fibre Fv = π−1(v) above v ∈ C. In Figure
1, following [26, Chap. IV, §9], we present all possible group structures of G(Fv)
corresponding to different Kodaira types of singular fibres Fv. We denote by B the
set of all places v ∈ C of bad reduction.

G(In) ∼= Z/n
G(I∗2m) ∼= (Z/2)2

G(I∗2m+1) ∼= (Z/4)
G(II) ∼= G(II∗) ∼= {0}

G(III) ∼= G(III∗) ∼= Z/2
G(IV ) ∼= G(IV ∗) ∼= Z/3

Figure 1. Group of components of fibre with a certain Kodaira type

type of Fv III III∗ IV IV ∗ Ib (b ≥ 2) I∗b (b ≥ 0)
cv(P ),

i = compv(P ) 1/2 3/2 2/3 4/3 i(b− i)/b
{

1 (i = 1)
1 + b/4 (i > 1)

cv(P,Q),
i = compv(P ),
j = compv(Q),

i < j

− − 1/3 2/3 i(b− j)/b
{

1/2 (i = 1)
2 + b/4 (i > 1)

Figure 2. Values of correcting terms cv(P,Q) for all possible
singular fibre types with at least two components

By [23, (2.31)] it is possible to write the height pairing in terms of explicit numbers.
We denote by cv(P,Q) the correcting terms that are determined by computation
of intersection of curves P and Q in the fibre above v, cf. Figure 2 reproduced
from [23, 8.16]. The values cv(P,Q) depend on the numbering of components in the
fibre above v. For a point P we denote by compv(P ) the component above v that
intersects the curve P . For a fibre Fv above v we only label the simple components.
The unique component that intersects the image of the zero section O is denoted
by Θv,0 and we put compv(P ) = 0 if the image P intersects Θv,0. For the fibres
of type In with n > 1 we put labels Θv,0,Θv,1, . . . , Θv,n−1 cyclically, fixing one of
two possible choices. For Fv of type I∗n we denote by Θv,1 the component which
intersects the same double component as Θv,0. The other two simple components
Θv,2 and Θv,3 are labelled in an arbitrary way. For the other additive reduction
types we choose one fixed labelling (the order is irrelevant). For two points P and
Q we put cv(P,Q) = 0 whenever compv(P ) = 0 or compv(Q) = 0. The non–trivial
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cases are described in Figure 2. In [23, Thm. 8.6] it is proved that

〈P,Q〉 = χ(S) + P .O +Q.O − P .Q−
∑
v∈B

cv(P,Q).

In particular we have the equality

(4.1) 〈P, P 〉 = 2χ(S) + 2P .O −
∑
v∈B

cv(P, P )

The notion of canonical height from [9, §1] is slightly different from the notion of
the height determined by 〈·, ·〉. In fact the first is defined by the limit

ĥE(P ) = lim
n→∞

deg σ∗nPO
n2 .

using our notation. By [26, Chap. III Thm. 9.3] the following equality holds

(4.2) ĥE(P ) = 1
2 〈P, P 〉.

We also remark that deg σ∗nPO = degDnP = nP .O which clearly follows from the
definition.

For a fibre above v let us denote by mv the number of irreducible components in
Fv. For the fibre Fv = π−1(v) with mv components the Euler number e(Fv) (cf. [1,
Prop. 5.1.6]) equals 0 at v of good reduction, mv at places v of bad multiplicative
reduction and mv + 1 at places of bad additive reduction.

e(Fv) =

 0 v has good reduction
mv v has multiplicative reduction
mv + 1 v has additive reduction

By [23, Thm. 2.8] it follows that the square K2
S of the canonical bundle KS is 0

and by Noether’s formula [8, Chap. V, Rem. 1.6.1] and [1, Prop. 5.1.6]

(4.3) 12χ(S) = e(S) =
∑
v∈B

(e(Fv) + δv).

The terms δv are non–negative and non-zero only in the special cases of charK = 2, 3.
We denote by ∆E the sum

∑
v∈C(ordv ∆v) (v) where ordv ∆v is the order of

vanishing of the minimal discriminant ∆v of E at v. On the other hand by Tate’s
algorithm [32] e(Fv) equals ordv ∆v when characteristic p equals 0 or is greater than
3. This implies the equalities

hK(C)(E) = 1
12 deg ∆E = 1

12
∑
v∈C

(ordv ∆v) (v) = 1
12e(S) = χ(S).

5. Arithmetic functions

We will use further two arithmetical functions:

d(n) =
∑
m|n

1,

σ2(n) =
∑
m|n

m2.
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For the applications in Section 7 it is often enough to use the trivial bound d(n) ≤ n.
However, for the applications in Section 8 a stronger bound [17] is required

(5.1) d(n) ≤ n1.5379 log 2/ log logn for n ≥ 3.
We easily obtain the following estimate

σ2(n) =
∑
m|n

m2 = n2
∏
pα||n

(1 + p−2 + . . .+ p−2α)

≤ n2
∏
p|n

(1 + p−2 + . . .) = n2
∏
p|n

(
1

1− p−2

)

≤ n2
∏
p

(
1

1− p−2

)
= n2ζ(2) < n2 · 1.645

It implies that for any n > 0 we have
(5.2) σ2(n) < ζ(2)n2 < 1.645n2.

For a fixed prime number p we define also functions

d(p)(n) =
∑
m|n

pvp(n/m),

σ
(p)
2 (n) =

∑
m|n

pvp(n/m)m2.

We denote by vp(n) the standard p–adic valuation of n at p.

Proposition 5.1. The functions σ(p)
2 (n) and d(p)(n) are multiplicative and they

satisfy:
• d(p)(n) = pe+1−1

(e+1)(p−1) · d(n)
• σ(p)

2 (n) = pe(p+1)
pe+1+1 σ2(n) < (1 + 1

p )ζ(2)n2

where n = n0p
e, p - n0 and e = vp(n).

Proof. Put f(n) = pvp(n). We observe that d(p)(n) is the Dirichlet convolution
of d(n) with f(n). Similarly σ

(p)
2 (n) is a convolution of f(n) with σ2(n). The

multiplicativity follows and the rest is an easy exercise. �

6. Bounds on the canonical height

In this section we collect together certain lower bounds on canonical height
ĥE(P ) of a point of infinite order. The first presented bound is slightly weaker than
the analogue of Lang’s conjecture [9] but its proof relies entirely on the theory of
Mordell–Weil lattices and the outcome does not depend on the characteristic of the
field K(C).

Lemma 6.1. Assume E is an elliptic curve over K(C). Let P be a point of infinite
order in E(K(C)). Then

1/ĥE(P ) ≤ 24 · 34χ(S).

Proof. If P is a point of infinite order in E(K(C)), then the height 〈P, P 〉 is positive.
More precisely if we put

m = LCM({|G(Fv)| : v ∈ B})
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then 〈P, P 〉 ≥ 1/m by [23, Lem. 8.3] and [23, Thm. 8.4]. The quantity 1/〈P, P 〉 is
bounded from above by LCM({|G(Fv)| : v ∈ B}) and

LCM({|G(Fv)| : v ∈ B}) ≤ 12
∏

v∈Bmult,≥2

mv,

where Bmult,≥2 denotes the set of places v of multiplicative reduction and such that
mv ≥ 2. We take the smallest possible a ∈ R such that for all integers n ≥ 2 we
have n ≤ an. It implies that a = supn≥2 n

1/n = 31/3. It follows from (4.3) that∏
v∈Bmult,≥2

mv ≤ a
∑

v∈Bmult,≥2
mv ≤ 34χ(S).

To finish the proof we apply (4.2). �

We define the conductor of E to be a divisor NE =
∑
v∈C uv (v) where

uv =

 0 if the fibre at v is smooth,
1 if the fibre at v is multiplicative,
2 + δv if the fibre at v is additive,

and the nonnegative numbers δv are zero for charK(C) 6= 2, 3. Let j(E) denote the
j–invariant of E/K(C) treated as a function. When j(E) is non–constant then let
pr be its inseparable degree. If charK(C) = 0, then we put 1.

Theorem 6.2 ([19, Thm. 0.1]). Assume E is an elliptic curve over K(C). Let p
denote the characteristic of K(C). When the map j(E) is constant or p = 0, then

deg ∆E ≤ 6(2g(C)− 2 + degNE).

When j(E) is non–constant, p > 0 and pr is its inseparable degree, then

deg ∆E ≤ 6pr(2g(C)− 2 + degNE).

We denote by σE the so-called Szpiro ratio which is defined as

σE = deg ∆E

degNE
.

We denote by LCM(1, 2, . . . , n) the least common multiple of all integers in the
interval [1, n].

Theorem 6.3 ([9, Thm. 4.1]). Let E be an elliptic curve over K(C) and let P be
a point of infinite order. Let M ≥ 1, N ≥ 2 be any integers. Then

ĥE(P ) ≥
6
((

1 + 1
M

) 1
σE
− 1

M −
1
N

)
· hK(C)(E)

(M + 1)(M + 2) LCM(1, 2, . . . , N − 1)2

The following fact is due to Rosser and Schoenfeld [22]. For the proof see [9, Lem.
4.3].

Lemma 6.4. For all integers n ≥ 1

log(LCM(1, . . . , n)) < 1.04n.

We reproduce the main result of [9] with slightly corrected numerical constants.
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Theorem 6.5 ([9, Thm. 6.1]). Let K(C) be a field of characteristic 0. Let P be a
non–torsion point in E(K(C)). For hK(C)(E) ≥ 2(g(C)− 1) we have

ĥE(P ) ≥ 10−15.5hK(C)(E).
For hK(C)(E) < 2(g(C)− 1) we have

ĥE(P ) ≥ 10−9−23g(C)hK(C)(E).

Proof. From the first assumption and Theorem 6.2 it follows that σE ≤ 12. To
prove the first inequality we apply Theorem 6.3 with M = 213 and N = 13.

To prove the second statement we assume that hK(C)(E) < 2(g(C)− 1). Value
hK(C)(E) is positive, so g(C) ≥ 2. By assumption our curve has at least one place
of bad reduction, hence degNE ≥ 1. The definition of σE implies that

σE ≤ 12hK(C)(E) < 24g(C).
Let M = 601g(C) and N = 25g(C). We combine Theorem 6.3 with Lemma 6.4. It
follows that

ĥE(P )
hK(C)(E) ≥

0.0016676e−52g(C)

g(C)2(300g(C) + 1)(600g(C) + 1) ≥ 10−9−23g(C).

�

We can now proceed in a similar way to obtain the analogue of Lang’s conjecture
for function fields K(C) of positive characteristic. The bound is worse than in
characteristic 0 case, because we have to take into account the inseparable degree of
the j–map.

Lemma 6.6. Let P be a point of infinite order on E over K(C) of positive
characteristic p and assume that the j-map of E has inseparable degree pr. For
hK(C)(E) ≥ 2 · pr(g(C)− 1) we have

ĥE(P ) ≥ 10−18prhK(C)(E).
For hK(C)(E) < 2 · pr(g(C)− 1) it follows that

ĥE(P ) ≥ 10−36g(C)prhK(C)(E).

Proof. Under the assumption hK(C)(E) ≥ 2 · pr(g(C)− 1) Theorem 6.2 implies that
1
σE
≥ 1

12pr .

Put x = pr. We choose M ≥ 1 and N ≥ 2 such that((
1 + 1

M

)
1
σE
− 1
M
− 1
N

)
> 0.

We take M = 200x2 and N = 12x + 1. Lemma 6.4 combined with Theorem 6.3
implies that

ĥE(P ) ≥ φ(x)hK(C)(E)

where φ(x) = e−24.96x(56x2+1)
800x3(12x+1)(100x2+1)(200x2+1) . For x ≥ 1 we have the lower bound

φ(x) ≥ 10−18x = 10−18pr .
We assume that hK(C)(E) < 2 · pr(g(C) − 1). Definition of σE implies that

σE < 24pr(g(C)− 1) < 12x with x = 2g(C)pr. For M and N as before we obtain

ĥE(P ) ≥ φ(x)hK(C)(E)
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with φ(x) ≥ 10−36g(C)pr . �

Remark 6.7. In positive characteristic and for constant j–map the bound on ĥE(P )
can be as good as in Theorem 6.5. For K(C) with charK(C) = 0 we can even prove
that ĥE(P ) ≥ 1

144hK(C)(E), cf. [9, Thm. 6.1]. However, to simplify the statements,
we don’t make a distinction because the general weaker bounds apply as well.

7. Characteristic 0 argument

Let {DnP }n∈N be an elliptic divisibility sequence attached to a point P in
E(K(C)) of infinite order. Let v denote a place in K(C). Let m(v) be a positive
integer defined as follows

m(v) := min{n ≥ 1 : ordv(DnP ) ≥ 1}.

For a divisor DnP we define a new divisor Dnew
nP by the recipe

ordvDnew
nP =

{
ordvDnP ,m(v) = n

0 , otherwise.

From this definition it follows by [11, Lem. 5.6] that

DnP =
∑

v∈SuppDnP

(ordvDnP ) (v)

=
∑

v∈SuppDnP

(ordvDm(v)P ) (v) (from characteristic 0 assumption)

=
∑

v∈SuppDnP
m(v)<n

(ordvDm(v)P ) (v) +
∑

v∈SuppDnew
nP

(ordvDnew
nP ) (v)

≤
∑
m|n
m<n

DmP +Dnew
nP

It follows that for a divisor DnP which has no primitive valuations, i.e. such that
SuppDnP ⊂

⋃
m<n SuppDmP the following inequality

DnP ≤
∑
m|n
m<n

DmP

holds. We apply the formula of Shioda for the height pairing to make the terms O(1)
from the proof of [11, Thm. 5.5] explicit. We rely fundamentally on the following
estimate

(7.1) degDnP ≤
∑
m|n
m<n

degDmP (⇐⇒) nP .O ≤
∑
m|n
m<n

mP.O

We define two quantities that will be used frequently

C1(n, P ) = 1
2
∑
v∈B

cv(nP, nP ),

C2(n, P ) = 1
2
∑
m|n
m<n

∑
v∈B

cv(mP,mP ).
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Assume n > 1 and DnP is not primitive. We apply formulas (4.1) and (7.1) to
obtain the following chain of inequalities and equalities

n2ĥE(P ) = ĥE(nP ) = 1
2 〈nP, nP 〉

= nP .O + χ(S)− 1
2
∑
v∈B

cv(nP, nP )

≤
∑
m|n
m<n

mP.O + χ(S)−
(

1
2
∑
v∈B

cv(nP, nP )
)

︸ ︷︷ ︸
C1(n,P )

=
∑
m|n
m<n

(
1
2 〈mP,mP 〉 − χ(S) + 1

2
∑
v∈B

cv(mP,mP )
)

+ χ(S)− C1(n, P )

= 1
2 〈P, P 〉

∑
m|n
m<n

m2 − χ(S)
∑
m|n
m<n

1 + 1
2
∑
m|n
m<n

∑
v∈B

cv(mP,mP )

︸ ︷︷ ︸
C2(n,P )

+χ(S)− C1(n, P )

= 1
2 〈P, P 〉 (σ2(n)− n2)− χ(S)(d(n)− 2) + C2(n, P )− C1(n, P )

= ĥE(P )(σ2(n)− n2)− χ(S)(d(n)− 2) + C2(n, P )− C1(n, P )

This can be rewritten in the following form

(7.2) χ(S)(d(n)− 2) + C1(n, P ) + n2ĥE(P ) ≤ ĥE(P )(σ2(n)− n2) + C2(n, P ).

Lemma 7.1. Let P be a point of infinite order in E(K(C)) and let n > 1 and
assume DnP is not primitive. Then

(7.3) n2ĥE(P ) ≤ ĥE(P )(σ2(n)− n2) + C2(n, P )

Proof. Since n > 1 it is always true that d(n) ≥ 2, the factor χ(S) is always positive
and the terms in C1(n, P ) are also non-negative by their definition. It implies that
we can drop first two terms of the inequality (7.2). �

Let E(K(C))0 denote the subgroup of E(K(C)) such that for each P ∈ E(K(C))0

the curve P intersects the same component as the curve O in every fibre of π : S → C.
For such points we always have cv(P, P ) = 0.

Corollary 7.2. With the notation from the previous lemma if P lies in E(K(C))0,
then every divisor DnP is primitive.

Proof. We use the inequality (7.3) and apply the assumption C2(n, P ) = 0. It
follows by (5.2) that

n2ĥE(P ) ≤ ĥE(P )(ζ(2)− 1)n2.

We can divide by ĥE(P ) because P is a point of infinite order, hence

2n2 ≤ ζ(2)n2

and n = 0. �
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Lemma 7.3. Let K(C) be a field of characteristic p 6= 2, 3. For a point P ∈
E(K(C)) and any k ∈ Z we have∑

v∈B
cv(kP, kP ) ≤ 3χ(S).

Proof. We denote by Bmult the set of points v in C(K) such that Fv has multiplica-
tive reduction. We denote by Badd,1 the set of points with additive reduction of
type I∗n and by Badd,III , Badd,III∗ , Badd,IV and Badd,IV ∗ the sets of points with
respectively reduction of type III, III∗, IV and IV ∗. Let Badd,2 denote the set of
all places of bad additive reduction not contained in Badd,1. Let v ∈ Bmult, then it
follows from Figure 2 that

cv(kP, kP ) ≤ i(mv − i)
mv

for certain i. The function on the right-hand side is quadratic with respect to i and
reaches the maximum at mv/2, hence cv(kP, kP ) ≤ mv

4 . That inequality and other
values in Figure 2 allow us to give the upper bounds∑

v∈Bmult

cv(kP, kP ) ≤ 1
4

∑
v∈Bmult

mv

∑
v∈Badd,III

cv(kP, kP ) ≤ 1
2 |Badd,III |∑

v∈Badd,III∗
cv(kP, kP ) ≤ 3

2 |Badd,III
∗ |

∑
v∈Badd,IV

cv(kP, kP ) ≤ 2
3 |Badd,IV |∑

v∈Badd,IV ∗
cv(kP, kP ) ≤ 4

3 |Badd,IV
∗ |

For points v of type Badd,1 we have cv(kP, kP ) ≤ mv−1
4 = mv+1

4 − 1
2 . This leads to

2 · |Badd,1|+ 4
∑

v∈Badd,1

cv(kP, kP ) ≤
∑

v∈Badd,1

(mv + 1).

It follows from (4.3) that

12χ(S) =
∑
v∈B

e(Fv) =
∑

v∈Bmult

mv +
∑

v∈Badd,1

(mv + 1) +
∑

v∈Badd,2

(mv + 1).

But we also have∑
v∈Badd,2

(mv + 1) = 3 · |Badd,III |+ 9 · |Badd,III∗ |+ 4 · |Badd,IV |+ 8 · |Badd,IV ∗ |

by [26, Chap. IV, Table 4.1]. It follows that

12χ(S) ≥ 4
∑

v∈Bmult

cv(kP, kP ) + 4
∑

v∈Badd,1

cv(kP, kP ) + 6
∑

v∈Badd,2

cv(kP, kP )

which is even stronger than what we wanted to prove. �

Remark 7.4. The statement of Lemma 7.3 is equivalent to [2, Lem. 3]. The upper
bound in loc. cit. follows from (4.1).
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Lemma 7.5. Let K(C) be a field of characteristic 0. Let P be a point in E(K(C)).
Then

C2(n, P ) ≤ 3
2χ(S)(d(n)− 1).

Proof. This follows simply from the definition of C2(n, P ) and Lemma 7.3. �

Corollary 7.6. Let P be a point of infinite order in E(K(C)). Suppose that DnP

is not primitive, then

n2 ≤ 36 · χ(S) · 34χ(S)

(2− ζ(2)) d(n)

Proof. Combine Lemmas 6.1, 7.1 and 7.5. �

Corollary 7.7. Let K(C) be a field of characteristic 0. Let P be a point of infinite
order in E(K(C)). If DnP is not primitive, then

n2 ≤ 1.5 · 109

(2− ζ(2))d(n) ·
{

106.5 , χ(S) ≥ 2(g(C)− 1)
1023g(C) , χ(S) < 2(g(C)− 1)

Proof. To bound the quantity 1/ĥE(P ) we apply Theorem 6.5. Suppose that
χ(S) ≥ 2(g(C)− 1), then

1/ĥE(P ) ≤ 1015.5 · 1/χ(S)

Combining this with the argument in Lemma 7.5 we obtain

1/ĥE(P ) · C2(n, P ) ≤ 1015.5 · 1/χ(S) · 1.5 · χ(S) · d(n) = 1.5 · 1015.5d(n).

It follows that

(7.4) n2 ≤ (1.5 · 1015.5)/(2− ζ(2)) · d(n).

On the contrary, when χ(S) < 2(g(C)− 1) we get

1/ĥE(P ) · C2(n, P ) ≤ 109+23g(C) · 1/χ(S) · 1.5 · χ(S) · d(n) = 1.5 · 109+23g(C)d(n).

Similarly, we get

(7.5) n2 ≤ (1.5 · 109+23g(C))/(2− ζ(2)) · d(n).

The corollary follows from those two estimates. �

Proof of Theorem 2.1. We have the trivial estimate d(n) ≤ n. Corollary 7.7 implies
that

n2 ≤ Cn
for a constant C that depends only on g(C). So n ≤ C and the theorem follows. �

Proof of Theorem 2.2. There exists a constant C that depends only on χ(S) as in
Corollary 7.6 such that n2 ≤ Cn. �

Remark 7.8. If we assume that n ≥ N0 where N0 is sufficiently large, we obtain due
to (5.1) a much better bound for d(n). This will lead in practice to a much smaller
bound for the number of non–primitive divisors.
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8. Characteristic p argument

Let v be a discrete valuation on K(C). It determines the completion K(C)v of
the field K(C) with respect to v with ring of integers Rv and maximal idealMv.
We consider below only fields K(C) of characteristic at least 5. For an elliptic curve
E over K(C) we consider its minimal Weierstrass model E(v) at v, cf. [25, Chap.
VII, §1]. Such a model is unique up to an admissible change of coordinates, cf.
[25, Chap. VII, Prop. 1.3]. We denote by Ê(v)the formal group attached to the
minimal Weierstrass equation E(v) in the sense of [25, Chap. IV]. Multiplication
by p map gives rise to a homomorphism of formal groups [̂p]v : Ê(v) → Ê(v). Its
height h equals 1 or 2, cf.[25, Chap. IV, Thm. 7.4]. If the height equals h, then
[̂p]v(T ) = g(T ph) where g(T ) ∈ Rv[[T ]] and g′(0) 6= 0. The coefficient of T p in
[̂p]v(T ) is denoted by H(E, v) and is the Hasse invariant in the sense of [14, 12.4].
The valuation hE,v := ordv(H(E, v)) does not depend of the minimal model at v by
[13, Ka-29]. We say that the curve E is ordinary when for all discrete valuations v
of K(C) the homomorphism [̂p]v has height 1.

Lemma 8.1. Let E over K(C) of characteristic p > 3 be an ordinary elliptic
curve and let χ(S) denote the Euler characteristic of the attached elliptic surface
π : S → C. Then

(p− 1)χ(S) =
∑
v∈C

hE,v.

Proof. For any place v in K(C) we fix a minimal model E(v) of E at v with Hasse
invariant H(E, v). Let ∆ ∈ K(C) be the discriminant and let H(E) ∈ K(C) denote
the Hasse invariant of one arbitrarily chosen model E(v0) at v0. We denote by ∆v

the minimal discriminant of E at v. For each v there exists an integer nv such that

(8.1) ordv(∆) = ordv(∆v) + 12nv.

From [13, Ka-29] it follows that

(8.2) ordv(H(E)) = ordv(H(E, v)) + (p− 1)nv.

Elements ∆ and H(E) correspond to functions ∆, H(E) : C → P1 and hence∑
v∈C ordv(H(E)) =

∑
v∈C ordv(∆) = 0. Summation over all v combined with

(8.1) and (8.2) implies that

(p− 1)
∑
v∈C ordv ∆v

12 =
∑
v∈C

hE,v.

To finish the proof we apply 12χ(S) =
∑
v∈C e(Fv) =

∑
v∈C ordv ∆v. �

We generalise [11, Lemma 5.6] to the case of positive characteristic. We note
that a similar lemma can be obtained in the number field case, cf. [30].

Lemma 8.2. Let E be an ordinary elliptic curve over K(C), field of characteristic p.
Let {DnP }n∈N be an elliptic divisibility sequence attached to a point P in E(K(C))
of infinite order. Let v denote a place in K(C). Let m(v) be a positive integer
defined as follows

m(v) := min{n ≥ 1 : ordv(DnP ) ≥ 1}.
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If hE,v ≤ p− 1, then for all n ≥ 1 the following equality

ordvDnP =
{
pe ordvDm(v)P + pe−1

p−1 hE,v ,m(v) | n
0 ,m(v) - n

holds for e = vp( n
m(v) ).

Let k ≥ dlogp(
p+(p−1)2χ(S)

2p−1 )e be an integer. For hE,v ≥ p and for all n ≥ 1 the
following equality

ordvDnP =


pe ordvDm(v)P + δ(e) ,m(v) | n, e ≤ k
pe ordvDm(v)P + pe−k−1

p−1 hE,v + pe−kδ(k) ,m(v) | n, e > k

0 ,m(v) - n
holds for e = vp( n

m(v) ). Function δ(e) depends on P and v and satisfies the estimates
for e ≥ 1

p · p
e − 1
p− 1 ≤ δ(e) ≤ p

2em(v)2ĥE(P ) + 1
2χ(S)− pe.

Proof. Let E(K(C))v,r denote the set
{P ∈ E(K(C)) : ordv σ∗PO ≥ r} ∪ {O}.

It follows from its definition that E(K(C))v,r is a subgroup of E(K(C)). Number
ordvDnP equals max{r ≥ 0 : nP ∈ E(K(C))v,r}. We consider the completion
K(C)v of field K(C) with respect to v, with integer ring Rv and maximal ideal
Mv. Suppose that d0 := ordvDm(v)P and d := ordvDnP ≥ 1. The subgroups
{E(K(C))v,r}r≥1 form a nested sequence so

GCD(m(v), n)P ∈ E(K(C))v,min{d0,d}.

Minimality of m(v) implies that m(v) ≤ GCD(m(v), n), hence m(v) | n.
By [25, Chap.VII, Prop. 2.2] there exists an isomorphism

iv : E1(K(C)v)→ Ê(Mv)
given by (x, y)→ −x/y and where E1(K(C)v) is the kernel of reduction at v defined
in [25, Chap.VII]. We note that the group E(K(C))v,1 is a subgroup of E1,v(K(C)v).
For an integer n coprime to p and P ∈ E(K(C))v,1 we have

ordv(iv(nP )) = ordv(iv(P )).
Assume that ordv(hE,v) ≤ p− 1. It follows that ordv(iv(pP )) = hE,v + p ord(iv(P )).
By iteration we obtain

ordv(iv(nP )) = pe ordv(iv(P )) + hE,v(1 + . . .+ pe−1)
where e = vp(n).

For ordv(hE,v) ≥ p and for any P ∈ E(K(C))v,1 we have ordv(iv(pP )) ≥
p+ p ord(iv(P )). After e iterations this implies that

ordv(iv(peP )) ≥ p · p
e − 1
p− 1 + pe ord(iv(P )).

The formal group homomorphism [̂p]v satisfies ordv([̂p]v(T )) = hE,v + p ordv(T ) for
T such that ordv(T ) > hE,v. Lemma 8.1 implies that hE,v ≤ (p − 1)χ(S). If e is
greater than k, then we have

pe + pe − 1
p− 1 · p > (p− 1)χ(S).
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Thus ordv iv(peP ) = pe ordv(iv(P )) + hE,v(1 + . . .+ pe−k−1) + δ(k) where δ(k) =
ordv iv(pkP )− pk ordv iv(P ).

For any e ≤ k we define δ(e) = ordv iv(peP ) − pe ordv iv(P ). It is clear that
δ(e) ≥ p · p

e−1
p−1 . For the upper bound we observe that

p2em(v)2ĥE(P ) + 1
2χ(S) ≥ ordvDpem(v)P = ordvDnP

by property (4.1) and Lemma 7.3. Since ordvDm(v)P ≥ 1, the upper bound follows
by replacing P by m(v)P in the definition of δ(e). �

Definition 8.3. Let E be an ordinary elliptic curve over a function field K(C)
of prime characteristic p. We say that E is tame, when for all places v we have
hE,v ≤ p− 1. Otherwise we say that E is wild.

If charK(C) = p > 0 we apply Lemma 8.2 instead of [11, Lemma 5.6]. Under
assumption that DnP has no primitive valuations it follows that

DnP =
∑

v∈SuppDnP

(ordvDnP ) (v)

=
∑

v∈SuppDnP
m(v)<n

(ordvDnP ) (v) +
∑

v∈SuppDnew
nP

(ordvDnew
nP ) (v)

=
∑

v∈SuppDnP
m(v)<n

(ordvDnP ) (v) (no primitive valuations)

=
∑

v∈SuppDnP
m(v)<n

(pvp( n
m(v) ) ordvDm(v)P ) (v) +

∑
v∈SuppDnP
m(v)<n

f(E,P, n, v) (v)

︸ ︷︷ ︸
W (E,P,n)

≤
∑
m|n
m<n

∑
v∈C

(pvp( nm ) ordvDmP ) (v) +W (E,P, n)

=
∑
m|n
m<n

pvp( nm )DmP +W (E,P, n).

Function f(E,P, n, v) is defined as the difference

f(E,P, n, v) = ordvDnP − pvp( n
m(v) ) ordvDm(v)P .

We can summarize the computations above in the following corollary.

Corollary 8.4. Let p > 3 be a prime number. Let E be an ordinary elliptic curve
over K(C) and let P be a point of infinite order on E. Assume n is such that DnP

is a divisor without primitive valuations. When p - n, then

DnP ≤
∑
m|n
m<n

DmP .
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When charK(C) = p, p | n, n = n0p
e and p - n0, then

(8.3) DnP ≤
∑
m|n
m<n

pvp( nm )DmP +W (E,P, n)

We apply the degree function to (8.3). If n is such that DnP has no primitive
divisors and p | n (p > 3), then

nP .O ≤
∑
m|n
m<n

pvp( nm )mP.O + degW (E,P, n).

Now we redo the computations from characteristic 0

n2ĥE(P ) = ĥE(nP ) = 1
2 〈nP, nP 〉

= nP .O + χ(S)− 1
2
∑
v∈B

cv(nP, nP )

≤
∑
m|n
m<n

pvp( nm )mP.O + degW (E,P, n)︸ ︷︷ ︸
C3(n,p,P )

+χ(S)−
(

1
2
∑
v∈B

cv(nP, nP )
)

︸ ︷︷ ︸
C1(n,P )

=
∑
m|n
m<n

pvp( nm )

(
1
2 〈mP,mP 〉 − χ(S) + 1

2
∑
v∈B

cv(mP,mP )
)

+ C3(n, p, P ) + χ(S)− C1(n, P )

= 1
2 〈P, P 〉

∑
m|n
m<n

pvp( nm )m2 − χ(S)
∑
m|n
m<n

pvp( nm )

+ 1
2
∑
m|n
m<n

pvp( nm )
∑
v∈B

cv(mP,mP )

︸ ︷︷ ︸
C2(n,p,P )

+C3(n, p, P ) + χ(S)− C1(n, P )

= ĥE(P )(σ(p)
2 (n)− n2)− χ(S)(d(p)(n)− 2) + C2(n, p, P )

+ C3(n, p, P )− C1(n, P )

Lemma 8.5. Let p > 3 be a prime and let charK(C) = p. Let P be a point of
infinite order in E(K(C)) and let n > 1 and assume DnP is not primitive. When
p - n then

n2ĥE(P ) ≤ ĥE(P )(σ2(n)− n2) + C2(n, P )
When p | n then

n2ĥE(P ) ≤ ĥE(P )(σ(p)
2 (n)− n2) + C2(n, p, P ) + C3(n, p, P )

Proof. For n coprime with p Lemma 8.2 implies that our inequalities reduce to the
situation known from characteristic 0. Assume now that p | n. Since n > 1 it is
always true that d(p)(n) ≥ 2, the factor χ(S) is always positive and the terms in
C1(n, p, P ) are also non-negative by their definition and the lemma follows. �

We need to establish some crude estimates of C2(n, p, P ) and C3(n, p, P ).
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Lemma 8.6. Let p > 3 be a prime and let charK(C) = p. Let P be a point of
infinite order in E(K(C)) and let n > 1 and assume DnP is not primitive. We
obtain the estimate

(8.4) C2(n, p, P ) ≤ 3
2χ(S) · (d(p)(n)− 1).

Proof. We apply Lemma 7.3 to prove the inequality (8.4). �

To get a uniform result we have to estimate the sum W (E,P, n) independently
of n. To achieve this we prove a technical lemma.

Lemma 8.7. Let E and P be given. Let v denote a place in K(C) and assume
hE,v > 0.

Then one of the cases holds

• E at v has good reduction and then p - m(v).
• E at v has additive reduction and then m(v) | 12p.
• E at v has multiplicative reduction and hE,v > 0 cannot both occur.

Proof. Assume first that E has good reduction at v. The assumption hE,v > 0
implies that locally at v the fibre Ev satisfies Ev[p] = 0 by [25, Chap.V, Thm. 3.1].
If p | m(v), then (m(v)/p)P would already meet the zero section at v contradicting
the minimality of m(v).

If v is of additive reduction, then from Kodaira classification of bad fibres, cf.
[26, Chap. IV, Table 4.1] it follows that there exists an integer k ∈ {1, 2, 3, 4} such
that the point kP hits the component of zero at v. Either kP is zero locally at v or
pkP is zero. It implies that m(v) | 12p.

Let t be a formal variable and consider the series with coefficients in Z[[t]] as in
[33]

b2(t) = 5
∞∑
n=1

n3tn

1− tn = 5t+ 45t2 + 140t3 + . . .

b3(t) =
∞∑
n=1

(
7n5 + 5n3

12

)
tn

1− tn = t+ 23t2 + 154t3 + . . .

∆(t) = b3 + b22 + 72b2b3 − 432b23 + 64b32 = t

∞∏
n=1

(1− tn)24

j(t) = (1 + 48b2)3

∆ = 1
t
(1 + 744t+ 196884t2 + . . .)

Finally, let E at v have multiplicative reduction. The normalised v-adic norm
of j(E) is greater than 1. There exists a parameter q ∈Mv such that j(E) = j(q)
([21, §3, VII]) and the curve

Eq : y2 + xy = x3 − b2(q)x+ b3(q)
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has j–invariant equal to j(q), has discriminant ∆(q) and is an elliptic curve over
K(C)v. It follows that

c4(Eq) = 1 + 240
∞∑
n=1

qn
∑
m|n

m3,

c6(Eq) = −1 + 504
∞∑
n=1

qn
∑
m|n

m5.

It implies that the Weierstrass model Eq is minimal at v and the curves E and Eq
are isomorphic over some extension L of K(C)v. The isomorphism corresponds to a
change of coordinates between a minimal Weierstrass model of E (with coordinates
x′ and y′) and Eq with x 7→ u2x′ + r, y 7→ u3y′ + u2sx′ + t where u, s, t belong to
the ring of integers of L. We have also ordv(u) = 0 so the equality hEq,v = hE,v
holds by [13, Ka-29]. By [14, Thm. 12.4.2] we have hEq,v = 0, which contradicts
our assumption hE,v > 0. �

For the next two lemmas assume that E is an ordinary elliptic curve over K(C),
field of characteristic p > 3. Let {DnP }n∈N be an elliptic divisibility sequence
attached to a point P in E(K(C)) of infinite order and let S → C be an elliptic
surface corresponding to E. We denote by e the p–valuation vp(n) of n.

Lemma 8.8. Let E be tame. Then

degW (E,P, n) ≤ (pe − 1)χ(S).

Proof. In the tame situation we have f(E,P, n, v) ≤ pe−1
p−1 hE,v. Combination of this

equality with Lemma 8.1 proves the statement. �

Let R = R(P, n) = {v : v ∈ SuppDnP , m(v) < n}. Denote by Σg and Σa the
set of places of respectively good and bad additive reduction of E. Let Rg = R∩Σg
and Ra = R ∩ Σa. Let S denote the set of places v in K(C) such that hE,v > 0.
Let Σsg = Σg ∩ S and Σsa = Σa ∩ S.

Lemma 8.9. Let E be wild and let M denote max{144p2,maxv∈Rg∩S m(v)2}. The
following estimates hold for any n and P of infinite order

(i) For vp(n) ≤ dlogp(
p+(p−1)2χ(S)

2p−1 )e we have

degW (E,P, n) ≤ (pe − 1)χ(S) + χ(S)p2eĥE(P )M + 1
2χ(S)2.

(ii) For vp(n) > dlogp(
p+(p−1)2χ(S)

2p−1 )e we have

degW (E,P, n) ≤ χ(S)
(

(pe − 1) + pe−k(1 + (p2kMĥE(P ) + 1
2χ(S)))

)
.

Proof. From Lemma 8.2 we can split the expression degW (E,P, n) into two parts
and estimate them separately.
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degW (E,P, n) =
∑

v∈R∩S
f(E,P, n, v)

=
∑

hE,v<p

f(E,P, n, v) +
∑

hE,v≥p

f(E,P, n, v)

≤ (pe − 1)χ(S) +
∑

hE,v≥p

f(E,P, n, v).

The last inequality follows from f(E,P, n, v) ≤ pe−1
p−1 hE,v for hE,v < p and Lemma

8.1. Put k = dlogp(
p+(p−1)2χ(S)

2p−1 )e and assume that e = vp(n) ≤ k. It follows that

f(E,P, n, v) ≤ p2em(v)2ĥE(P ) + 1
2χ(S)− pe

for v such that hE,v ≥ p. By Lemma 8.1 there is at most p−1
p χ(S) such different

places v. By Lemma 8.7 they can be only of good or additive reduction. Hence∑
hE,v≥p

f(E,P, n, v) ≤ p− 1
p

χ(S)p2eĥE(P )(max{max
v∈Σsa

m(v)2, max
v∈Rg∩S

m(v)2})

+ p− 1
p

χ(S)(1
2χ(S)− pe).

By Lemma 8.7 it follows that maxv∈Σsa m(v) ≤ 12p, hence∑
hE,v≥p

f(E,P, n, v) ≤ χ(S)p2eĥE(P )M + 1
2χ(S)2.

Assume now that e > k. We have the inequality

f(E,P, n, v) ≤ pe−k − 1
p− 1 hE,v + pe−kδ(k)

where δ(k) ≤ p2km(v)2ĥE(P ) + 1
2χ(S)− pk. It implies that∑

hE,v≥p

f(E,P, n, v) ≤ (pe−k − 1)χ(S)+

p− 1
p

χ(S)pe−k(p2kMĥE(P ) + 1
2χ(S)− pk)

or in simplified form∑
hE,v≥p

f(E,P, n, v) ≤ pe−kχ(S) + pe−kχ(S)(p2kMĥE(P ) + 1
2χ(S)).

�

Remark 8.10. We observe that the bound dlogp(
p+(p−1)2χ(S)

2p−1 )e approaches 1 as
p→∞ independently of χ(S).

Theorem 8.11. Let E be an elliptic curve over K(C) of positive characteristic
p > 3 with at least one bad fibre. Assume that E is tame. Let π : S → C be
the attached elliptic fibration. Let P be a point of infinite order on E. Let pr
be the inseparable degree of the j–map of E. There exists an explicit constant
N = N(g(C), p, r) which depends only on the genus of C, p and r such that for all
n ≥ N the divisor DnP has a primitive valuation.
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Proof. Let n be an integer such that the divisor DnP has no primitive valuation.
Let us first assume that p - n. Lemma 8.5 implies that

n2ĥE(P ) ≤ ĥE(P )(σ2(n)− n2) + C2(n, P ).
We combine the estimate σ2(n) < ζ(2)n2 with the estimate from Lemma 7.5. The
only difference with characteristic zero case is that we apply now the height estimate
for ĥE(P ) from Lemma 6.6. It follows that there exists an effective constant
N1 = N1(g(C), pr) such that n ≤ N1.

Let us assume that p | n. After Lemma 8.5 we have

n2ĥE(P ) ≤ ĥE(P )(σ(p)
2 (n)− n2) + C2(n, p, P ) + C3(n, p, P ).

By Proposition 5.1 it follows that

n2ĥE(P ) ≤ ĥE(P ) ·
((

1 + 1
p

)
ζ(2)− 1

)
n2 + C2(n, p, P ) + C3(n, p, P )

and in simplified form

θ(p)n2ĥE(P ) ≤ C2(n, p, P ) + C3(n, p, P )

where by θ(p) we denote 2−
(

1 + 1
p

)
ζ(2). We apply Lemma 8.6 and get the bound

θ(p)n2ĥE(P ) ≤ 3
2χ(S) · (d(p)(n)− 1) + degW (E,P, n).

Put e = vp(n). Lemma 8.8 implies that degW (E,P, n) ≤ (pe − 1)χ(S), hence

θ(p)n2ĥE(P ) ≤ 3
2χ(S) · (d(p)(n)− 1) + (pe − 1)χ(S)

and again by Proposition 5.1 it follows that

θ(p)n2ĥE(P ) ≤ 3
2χ(S) ·

(
pe+1 − 1

(e+ 1)(p− 1) · d(n)− 1
)

+ (pe − 1)χ(S)

We rearrange the sum and drop several terms to get

θ(p)n2ĥE(P ) ≤
(

3
2pd(n) + 1

)
peχ(S)

For χ(S) = hK(C)(E) ≥ 2 · pr(g(C)− 1) the inequality
χ(S)
ĥE(P )

≤ 1018pr

holds. Hence
θ(p)n2 ≤

(
3
2pd(n) + 1

)
pe · 1018pr

For n ≥ 19 we obtain d(n) ≤ nε with ε = 0.988. Since p ≥ 5, then θ(p) ≥ 2− π2

5 >
0.026. We have n = pen0 where n0 is coprime to p. Finally

0.026 · n · n0 ≤ 1018pr
(

3
2pn

ε + 1
)
.

We have n0 ≥ 1 hence αn ≤ βnε + γ for explicit α, β and γ that depend on p and r
only. Such an inequality can hold only for finitely many n. We conclude that there
exists a constant N = N(p, r) such that for n ≥ N the divisor DnP has a primitive
valuation.
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For χ(S) = hK(C)(E) < 2 · pr(g(C)− 1) the inequality
χ(S)
ĥE(P )

≤ 1036g(C)pr .

holds. In a similar way as above we obtain a bound N = N(g(C), p, r) such that for
n ≥ N the divisor DnP has a primitive valuation. �

Remark 8.12. We observe that our leading assumption p > 3 is needed to get a
positive lower bound on θ(p). We leave it as an open question whether it is possible
to establish the general result that will incorporate prime characteristics 2 and 3.

Let us assume that E is defined over K(C) where the field of constants K of
K(C) is not algebraically closed. For charK(C) = p we put K = Fq where q = ps

for some positive s. We consider a point P in E(K(C)). It is possible to construct
the fibration π : S → C such that the generic fibre is E over K(C) and the fibres
above v ∈ C(K) are defined over the field k(v) which has deg v := [k(v) : K].

Theorem 8.13. Let E be an elliptic curve defined over K(C) of characteristic
p > 3 with field of constants k = Fq, q = ps. Let E be wild. Let π : S → C be an
elliptic fibration attached to E in such a way that the fibres Ev above v ∈ C(K)
of good reduction are defined over k(v). Take a point P in E(K(C)) of infinite
order. Let pr be the inseparable degree of the j–map of E. There exists an explicit
constant N = N(g(C), χ(S), p, r, s) which depends only on the genus of C, Euler
characteristic χ(S), p, r and s such that for n ≥ N the divisor DnP has a primitive
valuation.

Proof. We proceed in a similar way to the proof of Theorem 8.11. Let n be an
integer such that the divisor DnP has no primitive valuation. For p - n we follow
the reasoning from the proof of Theorem 8.11. For p | n , let e = vp(n). We arrive
at the inequality

θ(p)n2ĥE(P ) ≤ 3
2χ(S) · (pe+1 · d(n)) + degW (E,P, n)

where θ(p) is defined as in the proof of Theorem 8.11. For v ∈ C(K) of good
reduction the fibre Ev is defined over Fqdeg v and the reduction Pv of point P at v
is an Fqdeg v–rational point. From Lemma 8.1 it follows that deg v ≤ (p − 1)χ(S).
Hasse–Weil bound [25, Chap. V, Thm. 1.1] implies that

#Ev(Fqdeg v ) ≤ (
√
qdeg v + 1)2.

From the definition of m(v) we have m(v) = ordPv, hence

m(v) ≤ (
√
qdeg v + 1)2 ≤ (

√
q(p−1)χ(S) + 1)2.

Let k = dlogp(
p+(p−1)2χ(S)

2p−1 )e and suppose e ≤ k. From Lemma 8.9 it follows that

degW (E,P, n) ≤ (pe − 1)χ(S)

+χ(S)p2eĥE(P ) max
{

144p2, (
√
q(p−1)χ(S) + 1)4

}
+ 1

2χ(S)2.

We conclude that there exist explicit constants α, β and γ that depend on χ(S), p
and s such that

θ(p)n2 ≤ χ(S)
ĥE(P )

(αd(n) + β) + γ.
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We bound trivially d(n) by n from above. When we have χ(S) ≥ 2 · pr(g(C)− 1)
the bound χ(S)

ĥE(P )
≤ 1018pr holds and the inequality is true only for finitely many

n under the assumption p ≥ 5. There is an explicit constant N which depends on
χ(S), p, s and r such that for n ≥ N the divisor DnP has a primitive valuation. For
χ(S) < 2 · pr(g(C)− 1) we produce a constant N that depends additionally on g(C).

Finally, for e > k we find explicit constants α, β, γ that depend on χ(S), p and s
such that

θ(p)n2 ≤ χ(S)
ĥE(P )

(αd(n) + β)pe + γpe.

For n ≥ 19 we have d(n) ≤ nε with ε = 0.988. Now we proceed as in the proof of
Theorem 8.11. �

9. Examples

We present several examples where we establish the exact set of non–primitive
divisors for concrete elliptic divisibility sequences. The first example deals with
an infinite family of curves in characteristic 0. We prove that as follows from the
theorem the constant is absolute and in this case equals 1, i.e. all divisors are
primitive.

The second example deals with the curve in characteristic p = 7 where the j–map
is inseparable. The next three examples indicate what happens when the field K(C)
is of positive characteristic and we allow the function H(E) to vanish. We show
that there are infinitely many non–primitive divisors in a sequence. They all rely
on the fact that the multiplication by p map is inseparable of degree p2.

Example 9.1. We present now an example where the constant can be explicitly
determined for a large family of elliptic curves with base curve C = P1 and χ(S)
unbounded. The computations performed in this example inspired the proof of the
general case for characteristic 0 fields.

Computations in the example are based on [16]. Let f, g, h ∈ Q[t] be polynomials
of positive degree without a common root that satisfy f2 + g2 = h2. We define an
elliptic curve

Ef,g,h : y2 = x(x− f2)(x− g2)

over the function field Q(t). There exists a point Q = (−g2,
√
−2g2h) of infinite

order on this curve. In the example we present an explicit argument that for all
n ∈ N the divisors DnQ are primitive. Note that χ(S) = deg f if deg g ≤ deg f
so the Euler characteristic can be made unbounded. We can take for example
polynomials

(f, g, h) =
(
t2m − 1

2 , tm,
tm + 1

2

)
for any m ∈ N. The equation Ef,g,h represents the globally minimal Weierstrass
model of the given elliptic curve. Its fibres of bad reduction are above the points
a ∈ Q such that f(a) = 0 or g(a) = 0 or (f2 − g2)(a) = 0 or a =∞. The correcting
terms in the Shioda’s height formula are recorded in Table 1. We denote by va(η)
the order of vanishing of a polynomial η at a. We also denote cv(R,R) by cv(R).
The height 〈Q,Q〉 equals deg f . By the bilinearity of the height pairing 〈·, ·〉 we
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know that 〈kQ, kQ〉 = k2〈Q,Q〉. Application of (4.1) implies that

k2〈Q,Q〉 = 2 deg f + 2kQ.O −
∑
a:

g(a)=0

ca(kQ)− c∞(kQ).

For k even the sum
∑
a:

g(a)=0

ca(kQ) vanishes and for k odd is equal to deg g. Similarly

for 2 | k the factor c∞(kQ) equals 0 and for 2 - k it is equal to deg f − deg g. This
follows from the group structure of G(Fv) for the fibres under consideration. By a
simple algebraic manipulation we get the formula for the intersection numbers

kQ.O =


k2−2

2 deg f , 2 | k

k2−1
2 deg f , 2 - k

Now we compute explicitly the constant N(Ef,g,h, Q). Suppose that DnQ does not
have a primitive divisors. Then it follows

nP .O ≤
∑
m|n
m<n

mP.O

Suppose n is odd, then
n2 − 1

2 deg f ≤
∑
m|n
m<n

m2 − 1
2 deg f.

This is equivalent to

(9.1) (d(n)− 1) + (n2 − 1) ≤ σ2(n)− n2.

The first term on the left side of equation (9.1) is non–negative and σ2(n) < ζ(2)n2,
so

n2 <
1

2− ζ(2)
hence n < 1.68, so n = 1. Now we consider the case when n is even. The inequality

n2 − 2
2 deg f ≤

∑
m|n
m<n

mQ.O

is equivalent to (
2d(n)− d

(
n/2v2(n)

))
+ 2(n2 − 2) ≤ σ2(n).

We drop the non-negative term
(
2d(n)− d

(
n/2v2(n))). It follows that

(2− ζ(2))n2 ≤ 4

which can hold only for n ≤ 2. Now we check by a direct computation that D2Q
actually contains primitive valuations:

2Q =
(
− (f2 − g2)2

8h2 ,

√
−1(g2 − f2)(3f2 + g2)(f2 + 3g2)

16
√

2h3

)
so the constant N(Ef,g,h, Q) equals 1.
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v cv(Q) compv(Q) Fv
∞ deg f − deg g 2(deg f − deg g) I4(deg f−deg g)

a : g(a) = 0 va(g) 2va(g) I4va(g)
a : f(a) = 0 0 0 I4va(g)

a : (f2 − g2)(a) = 0 0 0 I2va(g)

Table 1. Correcting terms for a curve with Weierstrass equation Ef,g,h

Example 9.2. Let C = P1 with parameter t for its function field K(C). Assume
that K = F7. The curve E : y2 = x3 − t3x + t has bad reduction at t = 0
(type II), t = 5 (type I7) and t = ∞ (type III). The associated elliptic surface
π : S → C satisfies χ(S) = 1 and hence S is a rational surface with Picard number
equal to 10. By Shioda–Tate formula [23, Cor. 5.3] the group E(F7(t)) has rank
1 and by [18] is generated by P = (3t+ 2, 2t2 + t+ 1) which has canonical height
ĥE(P ) = 1

2 〈P, P 〉 = 1
14 . The four points P, 2P, 3P and 4P are integral with respect

to t. We prove below that these are the only integral points with respect to t and for

n DnP

1 0
2 0
3 0
4 0
5 (4)
6 (3)
7 (0)
8 (α1) + (α2)((t− α1)(t− α2) = t2 + 6t+ 4
. . . . . .
14 (0) + 5(∞)
Table 2. Divisors DnP for small values of n

all n ≥ 5 the divisor DnP admits a primitive valuation. Observe that the j–invariant
of E is a 7-th power j =

(
6t
t+2

)7
and its inseparable degree is 7.

We check that for v 6= 0,∞ we have hE,v = 0 and hE,0 = 1, hE,∞ = 5, and
m(0) = 7, m(∞) = 14. Information from Table 9.2 and knowledge of the component

v type of v Pv Is singular on Ev? cv(P, P )
t = 5 I7 (3, 0) yes 10/7
t = 0 II (2, 1) no 0
t =∞ III (0, 0) yes 1/2

Table 3. Reduction Pv of point P at places v of bad reduction
with reduced curve Ev
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group for each bad fibre allow us to compute

cv(kP, kP ) =


1/2 , v =∞, 2 - k
(2k mod 7)·(7−(2k mod 7))

7 , v = 5
0 , otherwise

We assume n > 1 and that DnP has no primitive divisors. From the formula

(9.2) DnP ≤
∑
m|n
m<n

pvp( nm )DmP +W (E,P, n)

and the computations above we can effectively check that for 5 ≤ n ≤ 20000 the
formula does not hold. For n ≥ 20000 we apply the degree function to (9.2) and get

0.12n ≤ 14 ·
(

31
24 · n

0.465 + 1
)

which is valid only for n ≤ 11998. So only the divisors D2P , D3P and D4P are not
primitive and for n ≥ 5 the divisor DnP always has a primitive valuation. Because
E(F7(t)) = 〈P 〉, so for any F7(t)–rational point Q on E the sequence DnQ contains
at most 3 non–primitive elements.

Example 9.3. Let p ≥ 5 and pick an elliptic curve E0 : y2 = x3 + αx + β with
α, β ∈ Fp which is supersingular. Consider the field K(C) = Fp(t) of functions of the
projective line C over Fp and let r = t3+αt+β. The curve E(r)

0 : y2 = x3+αr2x+βr3

over K(C) is a generic fibre of a Kummer K3 surface with I∗0 fibres at places t0
such that r(t0) = 0 or t0 =∞. We always have a point P = (tr, r2) on this curve
(in fact rankE(r)

0 (Fp(t)) = 4 because E0 is supersingular, cf.[24, §12.7]). Moreover
on E0 the [p] multiplication map is inseparable of degree p2 and since E0 is defined
over Fp we have that [p](x, y) = (xp2

,−yp2). The curve E0 over K(C) is isomorphic
to E(rd)

0 over K(C) via (x, y) 7→ (xrd, y3/2d) for any positive integer d. Hence the
[p] map on E(r)

0 satisfies [p](x, y) = (xp2
r1−p2

,−yp2
r(3−3p2)/2). Any pk multiple of

the point P on E(r)
0 is an integral point

pkP = (tp
2k
r, r(3+p2k)/2).

The sequence {DpkP }k≥0 of divisors has support only at t = ∞: DP = 0 and
DpkP = (p2 − 1)(∞) for k ≥ 1. Hence the sequence {DnP }n≥1 has infinitely many
elements that have no primitive valuation.

There is nothing special about the point P so we can pick any K(C)–rational
point Q on E(r)

0 and there will exist again infinitely many divisors DnQ for n ≥ 1.
From our construction it follows that H(E) = 0 ∈ K(C).

Example 9.4. Let E be an elliptic curve over F2(t) with globally minimal Weier-
strass equation

E : y2 + ty = x3 + x.

We consider the point P = (1, 0) which is of infinite order in E(F2(t)). Multiplication
by 2 map on E satisfies the equality

x([2](x, y)) = 1 + x4

t2
.
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For two polynomials p,s in F2[t] which are coprime and p/s2 is the x–coordinate a
point Q on E we get

x(2Q) = p4 + s8

t2s8

and it is easy to see that p4 + s8 and t2s8 are again coprime. We show by induction
that for l ≥ 1

x(2lP ) =

l−1∑
j=1

t

∑l−2
k=j

22k+1

t
2
3 (22l−2−1) .

So for l ≥ 2 we have SuppD2lP = {(0)} and for every l ≥ 3 the divisor D2lP is not
primitive.

Example 9.5. Let E be an elliptic curve over F3(t) with globally minimal Weier-
strass equation

E : y2 + txy = x3 + 2t2x2 + (2t2 + 1)x+ (2t2 + 1).
The point P = (1, 0) is of infinite order in E(F3(t)). We check that

x([3](x, y)) = 1
(1 + t)4(2 + t)4x

9 + 2t2

(1 + t)(2 + t) .

For l ≥ 1 the divisor D3lP is supported at 1 and 2 and for l ≥ 2 it is not primitive.
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