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Abstract. We discuss the distribution of Mordell–Weil ranks of the family
of elliptic curves y2 = (x+ αf2)(x+ βbg2)(x+ γh2) where f, g, h are coprime
polynomials that parametrize the projective smooth conic a2 + b2 = c2 and
α, β, γ are elements from Q. In our previous papers we discussed certain special
cases of this problem and in this article we complete the picture by proving
the general results.

1. Introduction

In our previous papers [11], [14] and thesis [12] we have studied in several aspects
the following family of curves

(1) y2 = x(x− f2)(x− g2)

where f, g are two elements from certain field. We considered the case where f, g are
rational functions in one variable and satisfy the extra relation f2 + g2 = h2 where
h is also a rational function. The most general results were obtained in the case
when f, g, h ∈ Q[t] under the assumption that the polynomials are pairwise coprime.
By a simple change of variables we can put this equation into a more symmetric
form

y2 = (x+ f2)(x+ g2)(x+ h2)
Now we can either forget the relation f2 + g2 = h2, but then the connection with
previous equation is lost or we can generalize it in another direction. In this article
we consider a general family of the form

(2) y2 = (x+ αf2)(x+ βg2)(x+ γh2).

This curve contains an obvious point (0, fgh) of infinite order and we would like to
discuss how the rank of the Mordell-Weil group of curve (2) varies with α, β, γ.

We can offer the most complete description in the situation when

(3) max{deg f, deg g,deg h} = 2.

We will show that in such cases what we obtain is a Weierstrass model of a generic
fiber of a K3 surface defined over some number field. We are interested in the
computation of the Mordell–Weil group of the generic fiber over the rational function
field with suitable coefficients. This will be related to the computation of the Néron-
Severi group of the associated elliptic surface.
The main result of this paper will be proved in Sections 3 and 4.
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Main Theorem 1.1. Let (α, β, γ) ∈ Q3 be such that αβγ 6= 0. Assume that f, g, h
are coprime polynomials in Q[t] that satisfy conditions f2 + g2 = h2 and (3). Then
the curve (2) is smooth and is an elliptic curve. The Mordell-Weil rank of elliptic
curve (2) over Q(t) varies between 2 and 6 and each case is explicitly described in
Sections 3 and 4.

After short preliminaries in Section 2 we analyse the rank variation in family
2 in Section 3. Then we focus on the special case of the family with constants
α = β = γ = 1 in Section 4 that was previously discussed in [11], [12], [14]. We
develop a certain mechanism that allows us to easily switch between triples f, g, h that
parametrize a conic a2+b2 = c2. In fact, we prefer to perform certain computations in
the most convenient way, by choosing the standard triple f = t2−1, g = 2t, h = t2+1.
Such a choice is arbitrary, and we can switch to any other such triple of polynomials.
This implies in particular that geometrically the elliptic surface that corresponds to
the curve (2) and the one that corresponds to the choice of standard polynomials is
isomorphic (not as fibred surface). So we can analyse simply the family

(4) E(α,β,γ) : y2 = (x+ α(t2 − 1)2)(x+ β · 4t2)(x+ γ(t2 + 1)2).

In paper [14] we have analyzed mostly the case α = β = γ = 1 with full description
of the geometric Mordell-Weil group and certain results over number fields. We
have also studied certain base changes of the family induced by a map φ : P1 → P1,
φ : t 7→ φ(t). Further we concentrate on the reduction modulo a prime of the model
α = β = γ = 1 and develop the properties of the supersingular K3 surfaces that
occur at certain primes.

The curves in family (2) appeared in [3] and were studied from another perspective
in [13]. They might also have applications in the study of dynamics on supersingular
K3 surfaces but this will be analysed elsewhere, cf. [5], [20].

2. Preliminaries

We formulate in this section the necessary definitions and theorems that will be
used throughout the article. The reader can consult also [21], [22], [25].

Definition 2.1. Let k be an algebraically closed field. Let C be a smooth projective
curve over k and S be a smooth projective surface over k. We call a triple (S,C, π)
an elliptic surface when π : S → C is a surjective morphism such that

• there exists a non-empty set B ⊂ C(k) such that for any v ∈ C(k) \B the
fibre π−1(v) is a curve of genus 1,

• there exists a section O : C → S of the morphism π,
• no fibre π−1(v) for v ∈ C(k) contains (−1)-curves.

To any elliptic curve over F (t) we can attach the corresponding elliptic surface
fibred over P1

F . We call it a Kodaira-Néron model of E over F (t).
For an elliptic curve E over K = Q(t) we denote by 〈·, ·〉E the height pairing

attached to E as in [21]. The group E(K)/E(K)tors with the induced pairing 〈·, ·〉E
is a positive definite lattice, cf. [21, Theorem 7.4]. To simplify the notation, we
write 〈·, ·〉 if the curve E is fixed. Explicitly, for two given points P,Q ∈ E(K) their
intersection pairing is given by

(5) 〈P,Q〉 = χ(S) + P .O +Q.O − P .Q−
∑
v∈B

cv(P,Q).
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For a point P in E(K) we denote by P the curve which lies in S and is the image
of a section determined by the point P , cf. [21, Lemma 5.2]. The curve O is the
image of the zero section O : P1

Q → S. In the case P = Q the formula simplifies to

(6) 〈P, P 〉 = 2χ(S) + 2P .O −
∑
v∈B

cv(P, P ).

The rational numbers cv(P,Q) depend only on the fibre type above v ∈ B of bad
reduction and on the indices of the components that intersect curves P and Q, cf.
[21, Theorem 8.6]. We usually denote cv(P, P ) by cv(P ). We denote by 〈P, P 〉 the
height of point P .

For an elliptic surface (S,C, π) we denote by NS(S) the Néron-Severi group of
the surface S. It follows from [21, Cor. 3.2] that it is a finitely generated and
torsion free abelian group. We denote its rank by ρ(S) and call it the Picard number.
Moreover, we can induce on NS(S) a structure of a lattice by using the intersection
product of divisors. Let B denote the set of closed points v in C such that π−1(v)
is singular. We denote by mv the number of components of π−1(v). We denote by
E the generic fiber of π treated as an elliptic curve over k(C). The Mordell-Weil
rank of the generic fiber E(k(C)) and the rank ρ(S) are related by the so-called
Shioda-Tate formula

Theorem 2.2 ([21, Cor. 5.3]). Let (S,C, π) be an elliptic surface with generic fiber
E. The following equality holds

(7) ρ(S) = 2 +
∑
v∈B

(mv − 1) + rankE(k(C)).

It is standard to give upper bounds for Picard numbers in terms of the Euler
characteristic χ(S) = χ(S,OS) and the genus g(C) of curve C. In characteristic zero
they follow from Lefschetz (1,1)-classes theorem [8, Prop. 3.3.2].
(8) ρ(S) ≤ 10χ(S) + 2g(C).
In positive characteristic we have a weaker bound
(9) ρ(S) ≤ 12χ(S)− 2 + 4g(C).
The numbers χ(S) of elliptic surface S can be used to identify the type of algebraic
surface represented by S. An elliptic surface S is a rational surface if and only
if χ(S) = 1, it is a K3 surface when χ(S) = 2 and is of Kodaira dimension when
χ(S) ≥ 3. We can compute the numbers χ(S) in terms of explicit numbers e(Fv)
which depend on the reduction types of bad fibers π−1(v).

Theorem 2.3 ([15, Thm. 1]). Let (S,C, π) be an elliptic surface over the field k
of characteristic char(k) 6= 2, 3. The following equality holds

12χ(S) =
∑
v∈B

e(Fv)

where the number e(Fv) depend on the Kodaira type of fiber π−1(v) as follows

In general the bounds (8), (9) are not sharp and we need the approach that
requires the use of `-adic cohomology and good reduction to positive characteristic.
The main ideas come from [6, Ex. 20.3.6]. The details of this approach are explained
in [25, §6] and [9, §4]. We say that our elliptic surface (S,C, π) has a model over
SpecA where A is a discrete valuation ring in some number field K, with maximal



4 BARTOSZ NASKRĘCKI

Typ Fv In(n ≥ 1) II III IV I∗n(n ≥ 0) II∗ III∗ IV ∗

e(Fv) n 2 3 4 n+ 6 10 9 8

Table 1. Euler numbers e(Fv).

ideal p with residue field Fq = A/p of characteristic p. We assume that S has good
reduction modulo p which means that we have a smooth morphism S → SpecA.
For any prime ` 6= p there are natural injective homomorphisms
(10) NS(SQ)⊗Q` ↪→ NS(SFq )⊗Q` ↪→ H2

ét(SFq ,Q`(1)).

On the `-adic cohomology group H2
ét(SFq ,Q`(1)) there is an action of Frobenius

automorphism Φ. Its characteristic polynomial P (x) = det(Ix−Φ) has the property
that it is defined over Z and all its roots are complex algebraic numbers of norm
q. We denote the multiplicity of root α by λ(α,Φ). We denote by RΦ the sum of
multiplicities λ(ζq,Φ) where ζ is some root of unity.

Corollary 2.4 ([25, Cor. 2.3]). For the elliptic surface (S,C, π) with good reduction
at p we have the inequalities
(11) ρ(SQ) ≤ ρ(SFq ) ≤ RΦ.

In practical terms we deal with the case where the base curve C is the projective
line P1. The `-adic cohomology group H2

ét(SFq ,Q`(1)) is of dimension 12χ(SFq )− 2
in this case and the Frobenius automorphism acts on the Néron-Severi group in
an explicit way. The action on the part coming from the components of bad fibers
only permutes the components in each fiber. On the part that comes from sections
(which are induced by points on the generic fiber) the Frobenius action can be
determined by the x 7→ xq Frobenius action on the coefficients of points on the
generic fiber. To compute the characteristic polynomial of Φ we have to apply
the Grothendieck-Lefschetz formula and count the points over finite fields, cf. [11].
When the image of specialization map of Néron-Severi groups

spp : NS(SQ)→ NS(SFq )

is of finite index by the properties of lattices we have that the discriminant ∆(NS(SQ))
equals [NS(SFq) : spp(NS(SQ))]2∆(NS(SFq)). The discriminant ∆(NS(SFq) can be
computed if we assume the Artin-Tate conjecture. This is unconditional in the case
when S is a K3 surface, cf. [10, Thm. 6.1], [1, Thm. 5.2], [11, Thm. 5.2]. We will
use it only in the form of the following corollary.

Corollary 2.5. Let (S,P1, π) be a K3 elliptic surface with good reduction at prime
p. We assume that the Néron-Severi group is defined over Fq. Then

(12) qρ(SFq )−21 ·
lim
x→q

P (x)

(x− q)ρ(SFq ) ≡ −∆(NS(SFq )) (mod (Q×)2).

All over the paper we work with Weierstrass models of elliptic curves over Q(t).
We say that such a model is minimal at t− a for a ∈ Q if it is minimal in the usual
sense, cf.[23, Chap. VII.1]. We say also that it is minimal at infinity or at t =∞ if
the change of coordinates t 7→ 1/s and (x, y) 7→ (xs2n, ys3n) for some choice of n
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provide us with a Weierstrass model which is minimal at s = 0 in the usual sense.
If a model is minimal at every place we say it is globally minimal. In general we
can check if a prime p is a prime of good reduction for an elliptic surface over P1

by analysing its globally minimal Weierstrass model. It is particularly simple for
curves defined over Q(t). We denote by rad(h) the square free part of polynomial h.
Lemma 2.6 ([12, Tw. 2.2.12]). Let E be an elliptic curve defined over Q(t) with
globally minimal Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where ai ∈ Z[t]. Let ∆ ∈ Z[t] be its discriminant and j = f/g ∈ Q(t) its j-
invariant where f, g are coprime polynomials in Z[t]. Let p be a prime number
greater than 5 such that p - disc(h) for every polynomial h in the list {rad(ai) :
i = 1, 2, 3, 4, 6} ∪ {rad(f), rad(g), rad(∆)}. We denote by Ẽ the reduction modulo
p of the equation of E. If Ẽ defines an elliptic curve over Fp(t) and the model is
globally minimal and the reductions h̃ of polynomials h ∈ {rad(f), rad(g), rad(∆)}
are separable, than the elliptic surface E with generic fiber E has good reduction at
p.

3. General families with moderate ranks

In this section we consider the variation of the Mordell-Weil rank in family (4)
for different choices of (α, β, γ). Our main tool in this section is the Shioda-Tate
formula and theorems on good reduction of Néron-Severi groups. Theorem 4.2 and
a similar reasoning to Corollary 4.4 allow us to reduce the computations on (2) to a
fixed triple of coprime polynomials that establish a rational parametrization of the
conic a2 +b2 = c2. We choose the parametrizing polynomials f = t2−1, g = 4t2 and
h = t2 + 1. We work over the field Q(t) and a change of coordinates between two
Weierstrass models (4) for two different pairs (α, β, γ) and (α′, β′, γ′) determines
an equivalence relation between pairs: (α, β, γ) ∼ (α′, β′, γ′) if and only if there
exists an element λ ∈ Q× such that (α, β, γ) = (λα′, λβ′, λγ′). This is equivalent to
saying that the triples (α, β, γ), (α′, β′, γ′) determine the same point in P2(Q). We
can restrict to the affine part A2(Q) where γ 6= 0 because the curve (4) becomes
singular when αβγ = 0. This proves the following statement.
Proposition 3.1. Let (α, β, γ) ∈ {(x, y, z) : xyz 6= 0} ⊂ P2(Q) be a closed point.
The curve E(α,β,γ) is smooth and is isomorphic to E(α/γ,β/γ,1). We also have the
group isomorphism

E(α,β,γ)(Q(t)) ∼= E(α/γ,β/γ,1)(Q(t))
The discriminant of the Weierstrass equation (4) is defined by
(13) ∆(α,β,γ) = ∆(E(α,β,γ))(t) = 16 ·∆2

1 ·∆2
2 ·∆2

3

where
∆1 = α− 2αt2 − 4βt2 + αt4

∆2 = α− γ − 2αt2 − 2γt2 + αt4 − γt4

∆3 = γ − 4βt2 + 2γt2 + γt4

The j-invariant of the family is equal to

(14) j(α,β,γ) = j(E(α,β,γ))(t) = jnum
∆2

1 ·∆2
2 ·∆2

3
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where

jnum = 28
(

16β2t4 − 4βγ
(
t3 + t

)2 + α2 (t2 − 1
)4−

−α
(
t2 − 1

)2 (4βt2 + γ
(
t2 + 1

)2)+ γ2 (t2 + 1
)4)3

We observe that ∆(α,β,γ)(t) is a square of certain polynomial δ(t) in Q[t]. This
polynomial δ(t) is separable in Q[t] if and only if

(15) αβγ(α+ β)(α− γ)(β − γ)(αβ − αγ − βγ) 6= 0

Proposition 3.2. Under the assumption (15) the curve E(α,β,γ) is a globally min-
imal Weierstrass model of an elliptic curve. Its associated elliptic surface is an
elliptic K3 surface and has bad fibers of type I2 for t such that ∆(α,β,γ)(t) = 0. It is
smooth for t =∞.

Proof. We deduce that equation (4) is minimal at every finite place and has good
reduction at infinity ([23, VII, Remark 1.1]). The reduction types are I2 for t 6=∞
and such that ∆(α,β,γ)(t) = 0. Let S be the elliptic surface for which E(α,β,γ) is the
generic fiber. By the results of Oguiso [15, Theorem 1] and Shioda [21, Theorem
2.8] the Euler characteristic χ(S) = χ(S,OS) is equal to 2. This implies that our
surface S is a K3 surface. �

If the condition (15) is violated, then our curve E(α,β,γ) will be either singular
(only for αβγ = 0) or will have a different configuration of singular fibers of the
associated elliptic surface. The Zariski closed set

V ((α+ β)(α− γ)(β − γ)(αβ − αγ − βγ)) ⊂ P2

is the sum of irreducible components

V1,1,0 = V (α+ β)
V1,0,−1 = V (α− γ)
V0,1,−1 = V (β − γ)

Vq = V (αβ − αγ − βγ)

Let us denote by U the open set P2 \ V (αβγ). We say that a triple (α, β, γ) ∈ U is
generic if (α, β, γ) does not belong to any of the closed sets V1,1,0, V1,0,−1, V0,1,−1, Vq.
The set of such triples is again Zariski open. We denote it by Ugen.

3.1. Generic triple (α, β, γ). In the generic case an elliptic surface E(α,β,γ) attached
to E(α,β,γ) will be a K3 surface hence its Picard rank satisfies the inequality
ρ(E(α,β,γ)) ≤ 20. Application of Shioda-Tate formula shows that the rank of
E(α,β,γ)(Q(t)) is at most 6 in this case. Let us consider 6 points on this curve. To
simplify the notation assume for now that A = (t2 − 1)2, B = 4t2 and q(α, β, γ) =
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αβ − αγ − βγ.
P1 : x(P1) = 0, y2(P1) = αβγAB(A+B)

P2 : x(P2) = −αA+ (q(α, β, γ)/γ)B, y2(P2) = αB(γ − α)q(α, β, γ)(Aγ − βB +Bγ)2

γ3

P3 : x(P3) = βγ/(−β + γ)A, y2(P3) = Aβγq(α, β, γ)(Aγ − βB +Bγ)2

(β − γ)3

P4 : x(P4) = −(αβ)/(α+ β)(A+B), y2(P4) = αβ(A+B)q(α, β, γ)(αA− βB)2

(α+ β)3

P5 : x(P5) = −α(A+B), y2(P5) = −αB(α− γ)(A+B)(αA+ αB − βB)
P6 : x(P6) = βA, y2(P6) = Aβ(α+ β)(A+B)(Aβ +Aγ +Bγ)

Without further assumptions the points P1, P2, P3 and P4 all belong to E(α,β,γ)(Q(t)).
Point P5 with such a choice of x-coordinate exists if and only if α = β. The point
P6 is well-defined on E(α,β,γ) only when β = −γ. We denote by G the set of generic
triples (α, β, γ) such that α 6= β and β 6= −γ.

Lemma 3.3. Let (α, β, γ) ∈ G be a generic triple. The set {P1, P2, P3, P4} spans
a rank 4 subgroup of E(α,β,γ)(Q(t)). Their height pairing matrix (〈Pi, Pj〉)1≤i,j≤4
looks as follows 

4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


Proof. We denote by S the Kodaira-Néron model of E(α,β,γ). It has bad fibers
over points t0 ∈ Q such that (αA − βB)(t0) = 0 or (αA − γ(A + B))(t0) = 0 or
(βB − γ(A + B))(t0) = 0. All bad fibers are of type I2 and the image Pi of the
section Pi : P1 → S over the point t0 lies in the component which does not intersect
the component of the zero section O : P1 → S if and only if y2(Pi)(t0) = 0 and the
first coordinate reduces to the first coordinate of the appropriate two-torsion point
which happens to be singular at that fiber. The height pairing is symmetric so we
have to compute only the values 〈Pi, Pj〉 for i ≤ j.

From the equation of E(α,β,γ) it follows that π : S → P1 is a K3 surface, hence
χ(S) = 2. Moreover, we check that for i = 1, 2, 3, 4 we have Pi.O = 0. This is
easy to see for all t 6=∞. For t =∞ we make a change of coordinates t = 1/s and
(x, y) 7→ (xs4, ys6) and look at the fiber at s = 0. Now observe that the correcting
terms cv(P1) for P1 are all zero, hence 〈P1, P1〉 = 4. For 〈P1, P2〉 we have that
cv(P1, P2) = 0 for all points v and we check that P1.P2 = 2. This is true because
we have a system of equations

(16) x(P1) = x(P2)
y2(P1) = y2(P2)

and the number of its solutions equals the intersection number (P1+−P1).(P2+−P2).
The elements t0 that satisfy the system (16) are the one that satisfy

(−αβB + αγA+ αγB + βγB)(t0) = 0.
Defining polynomial is separable for (α, β, γ) ∈ G and we can easily check that
π−1(t0) is never a singular fiber. For t0 =∞ by a change of coordinates we easily
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check that there is no solution for s = 0. Hence

(P1 +−P1).(P2 +−P2) = 4

The involution ι : P 7→ −P on the generic fiber E(α,β,γ) extends to an isomorphism
on S and it preserves the intersection numbers. The divisor P2 +−P2 is invariant
under ι and ι(P1) = −P1. This implies that

P1.(P2 +−P2) = 2.

Now we observe that P1 cannot intersect both P2 and −P2 for our choice of t0.
Without loss of generality we can choose square roots in such a way that P1.P2 = 2.
This implies that 〈P1, P2〉 = 0.

A similar computation shows that 〈P1, P3〉 = 0. In this case what we have to use
is the fact that A is not separable and both solutions t = ±1 count twice. The same
way we obtain 〈P1, P4〉 = 0.

We claim that 〈P2, P2〉 = 2. This is easily checked because for t0 such that
(γ(A+B)− βB)(t0) = 0 the point P2(t0) is singular on the fiber above t0 and in
the blow-up it is moved to the other component of the I2 fiber above t0, so the
correcting terms for v = t0 are cv(P2) = 1/2. Polynomial (γ(A + B) − βB)(t) is
separable, hence the claim follows by height formula (6).

Now we prove that 〈P2, P3〉 = 0. The common intersection would appear for t0
such that (γ(A+B)− βB)(t0), hence in the fibers of bad reduction. This implies
already that cv(P2, P3) = 1/2 for v = t0. To prove that P2.P3 = 0 is equivalent
to proving that P2 − P3.O = 0. To check this we use the addition formula and
x(P2 + P3) is a degree 4 polynomial in t with nonzero free coefficient

− αγ2

−αβ + αγ + βγ
,

hence the divisor P2 − P3 never intersects the divisor O at any place.
We claim that 〈P2, P4〉 = 0. The solutions of the system x(P2) = x(P4), y2(P2) =

y2(P4) in t lead to t0 that satisfy (α2Aγ + α2β(−B) + α2Bγ − αβ2B + αβBγ +
β2Bγ)(t0) = 0. These points t0 do not coincide with the places of bad reduction
because of the assumptions on (α, β, γ), hence P2.P4 = 2. Now the correcting terms
cv(P2, P4) are always zero because the points never meet the same component at
the fibers of bad reduction. This proves the claim.

To prove 〈P3, P3〉 = 2 we proceed as in the case of point P2. Next we show
that 〈P3, P4〉 = 0. The solutions t0 to the system x(P3) = x(P4), y2(P1) = y2(P2)
satisfy (αAβ − 2αAγ −Aβγ + αβB − αBγ)(t0) = 0 and again they never meet the
points for which we have bad reduction, hence P2.P4 = 2 and the correcting terms
cv(P3, P4) are zero for all v.

Now to finish the proof we show that 〈P4, P4〉 = 2 but this is proved the same
way as for P2 and P3. We conlude by saying that the height pairing matrix of points
Pi, i = 1, 2, 3, 4 has nonzero determinant, so the points are linearly independent. �

Proposition 3.4. There exists a triple (α, β, γ) ∈ G such that

rank E(α,β,γ)(Q(t)) = 4.

Proof. We put α = 3, β = 5 and γ = 1. We have to show that ρ(E(α,β,γ)) ≤ 18.
The elliptic surface E(3,5,1) associated with E(3,5,1) has good reduction at p = 1009
by Lemma 2.6 and the Néron-Severi group is defined over Fp. We compute the
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characteristic polynomial of Frobenius automorphism Φ for any prime ` 6= p. It
follows that

P (x) = (x− 1009)18(x4 + 412x3 − 801146x2 + 419449372x+ 10094).
The last factor is irreducible over Z[t] and is not a cyclotomic polynomial, hence
RΦ = 18. Corollary 2.4 implies that ρ(E(3,5,1)) ≤ 18. Now application of Shioda-Tate
formula finishes the proof. �

Lemma 3.5. Let (α, β, γ) ∈ Ugen be a generic triple such that β = −γ and α 6= β.
The set {P1, P2, P3, P4, P6} spans a rank 5 subgroup of E(α,β,γ)(Q(t)). Its height
pairing matrix looks as follows

4 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 4


Proof. By Lemma 3.3 we already know that the points P1, P2, P3 and P4 span a
rank 4 subgroup of the full Mordell-Weil group. We have to compute now the
intersections 〈Pi, P6〉 for i = 1, 2, 3, 4 and 〈P6, P6〉.

To show that 〈P6, P6〉 = 4 we check that P6.O = 0 and that cv(P6) = 0 for all v.
Now observe that 〈Pi, P6〉 = 2−Pi.P6 for i = 1, 2, 3, 4. We will prove that Pi.P6 = 2.
This is equivalent to prove that the system x(Pi) = x(P6), y2(Pi) = y2(P6) has
exactly four solutions (some of them possibly multiple). For i = 1, 3 the solutions
come from the equation A(t) = 0. For i = 2, we obtain the solutions from
(αA−Aγ + 2αB −Bγ)(t) = 0. For i = 4 we get (−2αA+Aγ − αB)(t) = 0. �

Proposition 3.6. There exists a triple (α, β, γ) ∈ Ugen such that β = −γ and
α 6= β and

rank E(α,β,γ)(Q(t)) = 5.

Proof. We put α = 3, β = −1 and γ = 1. We check that the surface S = E(3,−1,1)
has good reduction at primes p = 241, 409 with the full Néron-Severi group of SFp
defined over Fp. We compute the characteristic polynomials Pp of Φp for a fixed
` 6= p

P241(x) = (x− 241)20(x2 + 478x+ 2412)
P409(x) = (x− 409)20(x2 − 626x+ 4092)

Now by Corollary 2.5 we obtain
∆(NS(SF241

)) ≡ −3 · 5 mod (Q×)2,

∆(NS(SF409
)) ≡ −3 mod (Q×)2.

Suppose that the rank E(−3,−1,1)(Q(t)) would be equal to 6. Then by Shioda-Tate
formula this will imply that N = ρ(SQ) = 20. The image spp(N) would be a
finite index subgroup in the codomain. So this will imply that the discriminants
∆(NS(SF409

)) and ∆(NS(SF241
)) should be equal modulo squares. But they are not,

hence a contradiction. This implies that ρ(N) ≤ 19 and by Shioda-Tate formula
again we obtain the statement of the proposition. �
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Lemma 3.7. Let (α, β, γ) ∈ Ugen be a generic triple such that α = β and β 6= −γ.
The set {P1, P2, P3, P4, P5} spans a rank 5 subgroup of E(α,β,γ)(Q(t)). Their height
pairing matrix looks as follows

4 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 4


Proof. The proof is similar to the proof of Lemma 3.5. �

Proposition 3.8. There exists a triple (α, β, γ) ∈ Ugen such that α = β and β 6= −γ
and

rank E(α,β,γ)(Q(t)) = 5.

Proof. We put α = 3, β = 3 and γ = 1 and consider S = E(3,3,1). We check that S
has good reduction at primes p = 73, 97. Like in the proof of Proposition 3.6 we
compute the discriminant of the reduction of Néron-Severi groups. The characteristic
polynomials of Frobenius are as follows

P73(x) = (x− 73)20(x2 + 142x+ 732)
P97(x) = (x− 97)20(x2 − 2x+ 972)

We obtain ∆(NS(SF73
)) ≡ −2 (mod (Q×)2) and ∆(NS(SF97

)) ≡ −3 (mod (Q×)2).
This leads to the conclusion that ρ(S) ≤ 19 which implies the statement of the
proposition. �

3.2. Type (α, β, γ) = (−1,−1, 1). Now we consider a very special generic triple
(α, β, γ). It satisfies two extra conditions α = β and β = −γ. By the projective
equivalence of tuples we can state the results for α = β = −γ = −1. The Kodaira
types of singular fibers that appear in this case are:

(17)

point fiber type
t2 + 2t− 1 = 0 I2

t4 + 1 = 0 I2
t2 − 2t− 1 = 0 I2
t4 + 6t2 + 1 = 0 I2

There are six linearly independent points on the curve:

R1 = (0, fgh)

R2 = (h2,
√

2fgh)
R3 = (1/2h2,

√
−6(h2 − 2g2)h)

R4 = (−f2,
√

2fgh)

R5 = (−1/2g2,
√

6g(2h2 − g2))

R6 = (−1/2f2,
√

6f(2h2 − f2))
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With respect to the height pairing 〈·, ·〉 the determinant of Gram matrix equals 384

(18)


4 0 0 0 0 0
0 4 0 −2 0 0
0 0 2 0 0 0
0 −2 0 4 0 0
0 0 0 0 2 0
0 0 0 0 0 2


By the Shioda-Tate formula this proves that we have found sufficiently many
independent points to obtain at least a finite index subgroup in the full Mordell-Weil
group. In fact we can easily determine the full Mordell-Weil group using a full
descent computation like in [11, Lemma 6.2]. We denote by T1 and T2 the generators
of the torsion subgroup. By the fibers configuration it is easy to prove (cf. [22, Cor.
7.5]) that the full torsion subgroup is isomorphic to Z/2⊕Z/2. We put T1 = (4t2, 0)
and T2 = (−t4 − 2t2 − 1, 0). We consider 6 points Q1, Q2, Q3, Q4, Q5, Q6 with
coefficients in the field Q(

√
2,
√

3,
√
−3)(t) defined as follows

2Q1 = R1 −R2 −R4 −R5 +R6 − T2,(19)
2Q2 = R1 −R2 −R5 +R6 − T2,(20)
2Q3 = R1 −R4 −R5 +R6 − T2,(21)
2Q4 = R1 −R2 +R3 −R4 −R5 + T1 − T2,(22)
2Q5 = R1 −R2 −R3 −R4 −R5 + T1 − T2,(23)
2Q6 = R1 −R2 +R3 −R4 +R6 + T1.(24)

The height pairing matrix for the points Qi has the form

(25)


3 5/2 5/2 5/2 5/2 5/2

5/2 3 3/2 2 2 2
5/2 3/2 3 2 2 2
5/2 2 2 3 2 5/2
5/2 2 2 2 3 3/2
5/2 2 2 5/2 3/2 3


and determinant equal to 3/8. Now we follow the approach in proof of [11, Lemma
6.2] and prove that the points Qi and torsion generators T1 and T2 span the whole
Mordell-Weil group over Q(t). We omit tedious computations which can be easily
done by a computer package. This allows us to deduce that the discriminant of
the Néron-Severi group in this case will be −25 · 3. This can be used to deduce the
supersingular primes p that allow in positive characteristic to get rank 8 over Fp2 ,
cf. Section 5.

The number field F = Q(
√

2,
√

3,
√
−3) is normal and its Galois group is isomor-

phic to (Z/2)3. Generators τ1, τ2, τ3 are determined easily

τ1(
√

2) =
√

2, τ1(
√

3) =
√

3, τ1(
√
−3) = −

√
−3

τ2(
√

2) = −
√

2, τ2(
√

3) = −
√

3, τ2(
√
−3) =

√
−3

τ3(
√

2) = −
√

2, τ3(
√

3) =
√

3, τ3(
√
−3) = −

√
−3

Group Gal(F/Q) acts naturally on the groupG = E(−1,−1,1)(Q(t)) = E(−1,−1,1)(F (t))
(cf. [12, Wn. 2.5.18]) and we obtain a Galois action on the free module G/Gtors
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which determines a representation
ρ : Gal(F/Q)→ GL6(Z).

We represent the matrices in the basis {Qi +Gtors} of G/Gtors

ρ(τ1) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 −1
0 0 0 1 0 1
0 0 0 0 0 1



ρ(τ2) =


−3 −2 −2 −4 −4 −4
2 1 2 2 2 2
2 2 1 2 2 2
0 0 0 0 1 −1
0 0 0 1 0 1
0 0 0 0 0 1



ρ(τ3) =


−7 −6 −6 −6 −6 −6
2 1 2 2 2 2
2 2 1 2 2 2
0 0 0 0 −1 1
2 2 2 1 2 1
2 2 2 2 2 1


The tuples v ∈ Z6 such that ρ(σ)v = v for all σ ∈ Gal(F/Q) represent the

points P in E(−1,−1,1)(F (t)) such that σ(P )− P ∈ E[2](F (t)) for all σ. We easily
find that the submodule {v : ρ(τ1τ3)v = v} is one-dimensional and is generated
by the vector (3,−1,−1, 0,−1,−1)T . This combination represents a point Q =
3Q1−Q2−Q3−Q5−Q6 which satisfies τi(Q) = Q+T2 for i = 1, 2, 3. This implies
that the free part of E(−1,−1,1)(Q(t)) is spanned by 2Q = P1, hence

E(−1,−1,1)(Q(t)) ∼= Z⊕ Z/2⊕ Z/2.

3.3. Triples (α, β, γ) ∈ U with α = γ. Let us denote the set of triples (α, β, γ) ∈ U
with α = γ and α 6= −β and β 6= γ by S1. In this situation the equation E(α,β,γ)
defines an elliptic curve which is a generic fiber of elliptic surface E(α,β,γ) with bad
fibers of types I2 and I4. The discriminant of the Weierstrass equation of E(α,β,γ)
has the form

256α2t4
(
α+ αt4 − 2αt2 − 4βt2

)2 (
α+ αt4 + 2αt2 − 4βt2

)2
For t = 0 and t =∞ we have the I4 fibers and for t that are roots of(

α+ αt4 − 2αt2 − 4βt2
) (
α+ αt4 + 2αt2 − 4βt2

)
= 0

we have I2 fibers. Shioda-Tate formula implies that we have the bound
rankE(α,β,γ)(Q(t)) ≤ 4.

Lemma 3.9. Let (α, β, γ) ∈ S1. The set of points {P1, P3, P4} spans a rank 3
subgroup of E(α,β,γ)(Q(t)). Their height pairing matrix looks as follows 4 0 0

0 2 0
0 0 2
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Proof. We observe first that the points P1, P3 and P4 are the only well-defined point
from the list in §3.1 that are not two-torsion. Essentially we reprove part of Lemma
3.3 with the extra assumption α = γ. Observe that the assumption does not change
the fiber types of bad reduction crucial for our computation. �

Proposition 3.10. There exists a triple (α, β, γ) ∈ S1 and

rank E(α,β,γ)(Q(t)) = 3.

Proof. We put α = 1, β = 4 and γ = 1 and we consider S = E(1,4,1). The surface
S has good reduction at primes p = 61 and p = 181 with its Néron-Severi group
defined already over Fp. The characteristic polynomials of Frobenius are as follows

P61(x) = (x− 61)20(x2 + 118x+ 612)
P181(x) = (x− 181)20(x2 + 166x+ 1812)

We obtain ∆(NS(SF61
)) ≡ −3·5 (mod (Q×)2) and ∆(NS(SF97

)) ≡ −3·11 (mod (Q×)2).
This leads to the conclusion that ρ(S) ≤ 19 which implies the statement of the
proposition. �

3.4. Triples (α, β, γ) ∈ U with α = −β. Let us denote the set of triples (α, β, γ) ∈
U with α = −β and α 6= γ and β 6= γ by S2. In this situation the equation E(α,β,γ)
defines an elliptic curve which is a generic fiber of elliptic surface E(α,β,γ) with bad
fibers of types I2 and I4. The discriminant of the Weierstrass equation of E has the
form

16α2 (t2 + 1
)4 (

α− γ + αt4 − γt4 − 2αt2 − 2γt2
)2 (

γ + γt4 + 4αt2 + 2γt2
)2

For each root of t2 + 1 we have an I4 fiber and for t that are roots of the remaining
factors of the discriminant we have I2 fibers. Shioda-Tate formula implies that we
have the bound

rankE(α,β,γ)(Q(t)) ≤ 4.

Lemma 3.11. Let (α, β, γ) ∈ S2. The set of points {P1, P2, P3} spans a rank 3
subgroup of E(α,β,γ)(Q(t)). Their height pairing matrix looks as follows 4 0 0

0 2 0
0 0 2


Proof. We mimic the proof of Lemma 3.9. �

Proposition 3.12. There exists a triple (α, β, γ) ∈ S2 and

rank E(α,β,γ)(Q(t)) = 3.

Proof. We put α = 5, β = −5 and γ = 1 and we consider S = E(5,−5,1). The surface
S has good reduction at primes p = 29 and p = 101 with its Néron-Severi group
defined already over Fp. The characteristic polynomials of Frobenius are as follows

P29(x) = (x− 29)20(x2 + 54x+ 292)
P101(x) = (x− 101)20(x2 − 122x+ 1012)
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We obtain ∆(NS(SF29
)) ≡ −7 (mod (Q×)2) and ∆(NS(SF97

)) ≡ −5 (mod (Q×)2).
This leads to the conclusion that ρ(S) ≤ 19 which implies the statement of the
proposition. �

3.5. Case β = γ. In this section let us denote the set of triples (α, β, γ) ∈ U with
β = γ and α 6= γ and α 6= −β by S3. In this situation the equation E(α,β,γ) defines
an elliptic curve which is a generic fiber of elliptic surface E(α,β,γ) with bad fibers of
types I2 and I4. The discriminant of the Weierstrass equation of E has the form

16β2(t− 1)4(t+ 1)4 (α+ αt4 − 2αt2 − 4βt2
)2 (

α− β + αt4 − βt4 − 2αt2 − 2βt2
)2

For t = 1 and t = −1 we have an I4 fiber and for t that are roots of the remaining
factors of the discriminant we have I2 fibers. Shioda-Tate formula implies that we
have the bound

rankE(α,β,γ)(Q(t)) ≤ 4.

Lemma 3.13. Let (α, β, γ) ∈ S3. The set of points {P1, P2, P4} spans a rank 3
subgroup of E(α,β,γ)(Q(t)). Their height pairing matrix looks as follows 4 0 0

0 2 0
0 0 2


Proof. We mimic the proof of Lemma 3.9. �

Proposition 3.14. There exists a triple (α, β, γ) ∈ S3 and

rank E(α,β,γ)(Q(t)) = 3.

Proof. We put α = 5, β = 1 and γ = 1 and we consider S = E(5,1,1). The surface
S has good reduction at primes p = 29 and p = 101 with its Néron-Severi group
defined already over Fp. The characteristic polynomials of Frobenius are as follows

P29(x) = (x− 29)20(x2 + 22x+ 292)
P101(x) = (x− 101)20(x2 + 106x+ 1012)

We obtain ∆(NS(SF29
)) ≡ −5 (mod (Q×)2) and ∆(NS(SF97

)) ≡ −23 (mod (Q×)2).
This leads to the conclusion that ρ(S) ≤ 19 which implies the statement of the
proposition. �

3.6. Further degeneration. In this paragraph we list the remaining two special
cases which are determined by triples (α, β, γ) in the intersections of U∩V1,0,−1∩V1,1,0
and U ∩ V0,1,−1 ∩ V1,1,0.

Type (1,−1,−1). The Kodaira types of singular fibers that appear in this case
are:

(26)

point fiber type
t4 + 1 = 0 I2

t = 1 I4
t2 + 1 = 0 I4

t = −1 I4
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We can easily find two linearly independent points:
P1 = (0, fgh)

P2 = (−f2 + g2,
√

2f2g)
with height pairing matrix

(27)
(

4 0
0 2

)
and they span a rank 2 subgroup which is of finite index in the full Mordell-Weil
group.

Type (1,−1, 1).The Kodaira types of singular fibers that appear in this case are:

(28)

point fiber type
t =∞ I4
t = 0 I4

t2 + 1 = 0 I4
t4 + 6t2 + 1 = 0 I2

We find two points:
P1 = (0,

√
−1fgh)

P3 = (−1/2f2, 1/(2
√
−2)f(g2 + h2))

with height pairing matrix

(29)
(

4 0
0 2

)
The points P1 and P3 are linearly independent.

3.7. Case αβ −αγ − βγ = 0. The equation αβ −αγ − βγ = 0 is homogeneous and
we can parametrize it as a quadric in P2. We consider the triples (α, β, γ) ∈ U that
are parametrized by r 6= 0 as follows
(30) α = r(r − 1), β = r, γ = r − 1.
The curve E(α,β,γ) in this case has the Weierstrass equation

(31) y2 = (x+ r(r − 1)(t2 − 1)2)(x+ r(4t2))(x+ (r − 1)(t2 + 1)2)
with discriminant ∆ = 16r2(r − 1)2δ6, where δ = −1 + r − 2t2 − 2rt2 − t4 + rt4. It
can be easily transformed into another form

(−1)δ(y′)2 = x′(x′ − 1)(x′ − r)
where x + r(4t2) = x′(−1)δ and y = y′δ2. The curve (y′)2 = x′(x′ − 1)(x′ − r)
determines a constant fibration so every fiber is of type I0 and the twist by −δ
introduces four I∗0 fibers over the points t0 such that δ(t0) = 0. The curve (31) is
hence a globally minimal Weierstrass model. Application of Shioda-Tate formula
allows us to compute the bound rankE(α,β,γ)(Q(t)) ≤ 2.

We observe that the equation −δ = s2 with respect to variables t and s defines
a quartic model of elliptic curve (y′)2 = x′(x′ − 1)(x′ − r). This means that the
isotrivial elliptic surface attached to (31) is a Kummer fibration E related to two
elliptic curves E1 : −δ = s2 and E2 : (y′)2 = x′(x′− 1)(x′− r). They are isomorphic
over Q and by [22, §12.6] it follows that ρ(E) = 18+rankHom(E1, E2). This implies
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K RK ω j(E)
Q(
√
−1) Z[

√
−1] 1 +

√
−1 1728

Q(
√
−2) Z[

√
−2]

√
−2 8000

Q(
√
−7) Z[

√
−7] 1+

√
−7

2 −3375

Figure 1. Three elliptic curves E with j-invariant j(E) and endo-
morphism ring isomorphic to RK

that we have precisely rank 2 if E1 has complex multiplication, and otherwise rank
1. We have the usual point of infinite order in any case on the curve (31).

P1 = (0, 2(r − 1)rt
(
t4 − 1

)
)

The other linearly independent point in the CM case can be obtained as follows. We
consider a quadratic twist of E2 by −δ. We denote this curve by E(−δ)

2 . Let σ denote
the automorphism of the field Q(t)(

√
−δ) determined by σ(

√
−δ) = −

√
−δ. There

is a natural isomorphism φ between the group of points H̃ = {P : E2(Q(t)(
√
−δ)) :

σ(P ) = −P} and the group E(−δ)
2 (Q(t)). For a point P ∈ H̃ we have P = (α, β

√
−δ)

for α, β ∈ Q(t). Then φ(P ) = (α(−δ), β(−δ)2). Since E1 and E2 are isomorphic,
we assume for now that E1 = E2 to simplify the notation. Since E2 is a CM curve,
then End(E2) is isomorphic to an order RK in some quadratic imaginary extension
K of Q. We pick an element ω of RK that is not in Z. It induces an endomorphism
[ω] ∈ End(E2). On the curve E2 our point P1 from (31) induces a point

P ′1 =
(

4rt2

−δ
,

2r(r − 1)t(t2 − 1)(1 + t2)
δ
√
−δ

)
.

It maps via φ to P (−δ)
1 on E(−δ)

2 . We observe that for any point Q ∈ E2(Q(t)(
√
−δ))

the endomorphism [ω] is equivariant with respect to σ: [ω](σ(Q)) = σ([ω](Q)).
In particular [ω](σ(P ′1)) = σ([ω](P ′1)) and this implies [ω](P ′1) ∈ H̃, and via φ it
corresponds to a point in E

(−δ)
2 (Q(t)) which we denote by abuse of notation by

[ω](P (−δ)
1 ). The points P (−δ)

1 and [ω](P (−δ)
1 ) cannot be linearly dependent because

of the choice of [ω], so they span a rank two subgroup in E(−δ)
2 (Q(t)). We denote

for now the curve E2 by Er. We have proved the following lemma.

Lemma 3.15. Let (α, β, γ) ∈ U be such that αβ −αγ − βγ = 0. Choose parameter
r like in (30). Then the following holds

rankE(α,β,γ)(Q(t)) =
{

1 if Er does not have complex multiplication,
2 otherwise.

Example 3.16. In several simple cases of complex multiplication on E2 we can
actually compute explicitly the point [ω](P (−δ)

1 ) for some particular choice of ω. We
freely adopt the results of [24, II, Prop. 2.3.1]

For a fixed parameter r we choose an isomorphism between Er and curve E from
Figure 2. This induces via the chain of morphisms Er

iso−−→ E
[ω]−−→ E

iso−1

−−−→ Er the
endomorphism [ω] on Er. We skip the simple but tedious algebraic manipulations
and offer the final results
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• E : y2 = x3 + x, j = 1728, ω = 1 +
√
−1

[ω](x, y) =
(
ω−2(x+ 1/x), ω−3y(1− 1/x2)

)
• E : y2 = x3 + 4x2 + 2x, j = 8000, ω =

√
−2

[ω](x, y) = (ω−2(x+ 4 + 2/x), ω−3y(1− 2/x2))
• E : y2 = x3 − 35x+ 98, j = −3375, ω = (1 +

√
−7)/2

[ω](x, y) = (α−2(x− 7(1− ω)4/(x+ ω2 − 2)), ω−3y(1 + 7(1− ω)4)/(x+ ω2 − 2)2)

Figure 2. Certain endomorphisms of degree 2 in End(E)

• f = 2, j = 1728, η =
√

8
√
−1

P
(−δ)
2 =

(
(1− (2− 4

√
−1)t2 + t4)2

(1 + t2)2(1− 6t2 + t4) ,
ηt(−1 + 5t2 − 26t4 + 26t6 − 5t8 + t10)

(1 + t2)3(1− 6t2 + t4)2

)
Height pairing matrix of (P (−δ)

1 , P
(−δ)
2 )(

4 4
4 8

)
• f = 3 + 2

√
2, j = 8000, η =

√
−3− 2

√
2

P
(−δ)
2 =

(
(
√

2 + 2)
(
t4 − 1

)2
4t2
(√

2t4 +
√

2− 4t2
) , η (4√2t10 − 4

√
2t2 − t12 − 5t8 + 5t4 + 1

)
8
√

2t3
(
−2
√

2t2 + t4 + 1
)2

)

Height pairing matrix of (P (−δ)
1 , P

(−δ)
2 )(

4 0
0 8

)
• f = 1/2(1 + 3

√
−7), j = −3375

x(P (−δ)
2 ) =

(3
√
−7− 1)

(
(−
√
−7− 3)t2 + 4t4 + 4

)2
64t2

(
(3−

√
−7)t4 − 3(1−

√
−7)t2 −

√
−7 + 3

)
y(P (−δ)

2 ) =
(
√
−7 + 1)

(
t4 − 1

) (
3(
√
−7− 5)t6 + 3(

√
−7− 5)t2 + 4t8 + 24t4 + 4

)
t3
(
3(
√
−7− 5)t2 + 8t4 + 8

)2
Height pairing matrix of (P (−δ)

1 , P
(−δ)
2 )(

4 2
2 8

)
4. Case α = β = γ = 1

The remaining case of triple (α, β, γ) = (1, 1, 1) was studied extensively in [12]
and [14]. In this section we offer an alternative proof of [14, Lem. 5.8]. We
apply theorems from [18] to avoid elaborate height computations performed in [14].
Moreover, the techniques applied in this section justify our previous restriction of
family (2) to the case where (f, g, h) = (t2 − 1, 2t, t2 + 1). We conclude in this
section that over Q(t) the classification of the curves with parameters (α, β, γ) do
not essentially depend on the choice of fixed parametrizing triple.
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Let K be a field of characteristic 0 and assume that

E : y2 = x3 +Ax2 +Bx

is a Weierstrass model of an elliptic curve such that A,B ∈ K. Let σ : K → K be
an automorphism of field K. The curve

Eσ : y2 = x3 + σ(A)x2 + σ(B)x

is a Weierstrass model of another elliptic curve over K. The map

E(K)→ Eσ(K)
(x, y) 7→ (σ(x), σ(y))(32)

O 7→ O

establishes an isomorphism of the Mordell-Weil groups E(K) and Eσ(K).
Now we will recall certain results about rational curves and their parameterizations

from [18, Chap. 4]. Let F be any algebraically closed field of characteristic zero.
The function f(t) ∈ F (t) is in reduced form when the numerator and denominator
of f are coprime.

Definition 4.1. Let f ∈ F (t) be a rational function in reduced form. If f is
non-zero, the degree of f is the maximum of the degrees of the numerator and
denominator of f . When f is zero, we define its degree to be −1. We denote the
degree of f by deg(f).

Rational functions of degree 1 are called linear. When f is linear, it is of the
form f(t) = (at+ b)/(ct+ d), where ad− bc 6= 0 and a, b, c, d ∈ F . We write shortly
f(t) = γt where γ is the corresponding matrix

γ =
(
a b
c d

)
∈ GL2(F ).

By a theorem of Clebsch, every irreducible curve of genus 0 has a parametrization,
cf. [18, Chap. 4.1]. In particular, every smooth conic C : αa2 + βb2 = γc2 has
a parametrization. Let FC(x, y) = 0 be the affine equation of C. We always
assume that FC is an irreducible and nonconstant polynomial in F [x, y]. The
parametrization is a non-constant rational map

P : t 7→ (χ1(t), χ2(t))

such that FC(χ1(t), χ2(t)) = 0. We define the degree of a parametrization P as
follows

degP = max{degχ1,degχ2}.
We say that a parametrization P of curve C is proper, when the rational map P is
birational. Two parametrizations of the same curve C are related to each other.

Theorem 4.2 ([18, Chap. 4, Lemma 4.17]). Let P be any affine parametrization
of the rational curve C. Let P ′ be any other parametrization of C.

• There exists a nonconstant rational function f ∈ F (t) such that P ′(t) =
P(f(t)).

• Parametrization P ′ is proper if and only if there exists a linear function
f ∈ F (t) such that P ′(t) = P(f(t)).
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Now it is important for us to establish a relation between the degree of the
defining polynomial FC(x, y) of our rational curve and the degree of any proper
parametrization P.

Theorem 4.3. Let C be an affine rational curve defined over F with defining
polynomial FC(x, y) ∈ F [x, y] and let P = (χ1, χ2) be a parametrization of C. Then
P is proper if and only if

degP = max{degx(FC),degy(FC)}.

Furthermore if P is proper and χ1 is nonzero, then degχ1 = degy(FC); similarly if
χ2 is nonzero then degχ2 = degx(FC).

This theorem easily implies that every proper parametrization PC of a smooth
conic C is of degree 2 and the other way around every triple of coprime polynomials
f, g, h ∈ F [t] and such that f2 + g2 = h2, max{deg f, deg g,deg h} = 2 determines a
proper parametrization of the curve a2 + b2 = c2. We denote such a parametrization
by Pf,g,h. Its equation in variable t is given by

Pf,g,h(t) = (f(t)/h(t), g(t)/h(t)).

Any two such parametrizations Pf,g,h and Pf ′,g′,h′ are related by a linear change of
variable Pf ′,g′,h′(t) = Pf,g,h(γt) for a γ ∈ GL2(F ). We denote by Ef,g,h the curve
in the form 2 with α = β = γ.

Corollary 4.4. Let (f, g, h) and (f ′, g′, h′) be two triples of polynomials in variable
t that parametrize the conic a2 + b2 = c2 in a proper way. There exists a linear
function γt, γ ∈ GL2(F ) such that the automorphism σ : t 7→ γt ∈ Aut(F (t)) induces
an isomorphism of the Mordell-Weil groups

Ef,g,h(F (t)) ∼= Ef ′,g′,h′(F (t))

where Ef ′,g′,h′ is F (t)-isomorphic to the curve Eσf,g,h. In particular, we obtain the
equality

rank Ef,g,h(F (t)) = 2.

Proof. The curve Ef,g,h is isomorphic over F (t) to the curve y2 = x(x−1)(x−(f/g)2).
Next we apply Theorem 4.3 to compare parametrizations Pf,g,h and Pf ′,g′,h′ . By
the theorem there exists an element γ ∈ GL2(F ) such that

f/h(γt) = f ′/h′(t), g/h(γt) = g′/h′(t).

This easily implies that f/g(γt) = f ′/g′(t). We apply the automorphism σ to the
curve Ef,g,h and we get a curve Eσf,g,h which is F (t)-isomorphic to Ef ′,g′,h′ . Finally
this implies Ef,g,h(F (t)) is isomorphic to Eσf,g,h(F (t)) and to Ef ′,g′,h′(F (t)). The
last statement of the theorem follows for example from the fact that

rank Et2−1,2t,t2+1(F (t)) = 2

cf. [11, Lemma 3.8]. �

Remark 4.5. We stress the fact that in general the curves Ef,g,h and Ef ′,g′,h′

for different parametrizations are not F (t)-isomorphic. This can be easily seen by
comparing the j-invariants for both curves as a function of variable t.
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We can keep track of the field of definition for the curve Ef,g,h. Suppose we let
F be a number field and assume f, g, h all lie in F [t] and that they determine
a proper parametrization Pf,g,h of the conic a2 + b2 = c2. We assume that the
polynomials are coprime. We call a parametrization determined by polynomials
(t2 − 1, 2t, t2 + 1) a standard parametrization. It is easy to see that for any pair of
coordinates (x0, y0) ∈ F 2 where y0 6= 0 we put t = x0+1

y0
to recover the point. For

the point (−1, 0) we put t = 0 and for (1, 0) we put t = 1/s to change the coordinate
chart and in the projective coordinates we take s = 0. So every point of P1(F ) can
be reached by this parametrization. We can assume without loss of generality that
deg f = 2. If not, then deg g = 2 or otherwise this will imply deg h = 1 and the
triple (f, g, h) would not determine a proper parametrization of the conic.

Then from the equation f2 = h2 − g2 we can deduce that h− g = s2
1 and h+ g =

s2
2 where f factors as s1s2. We must have deg s1 = deg s2 = 1, otherwise the
parametrization could not be proper. Assume s1 = c(t− α) and s2 = d(t− β) for
some c, d, α, β ∈ F̄ . From the assumptions about f, g, h we get that cd ∈ F . Because
h = (s2

1 +s2
2)/2 ∈ F [t], g = (s2

2−s2
1)/2 ∈ F [t], then c2, d2 ∈ F and α, β ∈ F . We will

show now that the parametrization Pf,g,h is related to the standard parametrization
Pt2−1,2t,t2+1 via a linear rational function with coefficients in F . This will imply
that the groups Ef,g,h(F (t)) and Et2−1,2t,t2+1(F (t)) are F (t)-isomorphic.

We have the equalities

f

h
= 2s1s2

s2
1 + s2

2
= 2(γt)

1 + (γt)2 ,

g

h
= s2

2 − s2
1

s2
1 + s2

2
= (γt)2 − 1

1 + (γt)2

where γ is a matrix from GL2(F )

γ =
(
d/c −(d/c)β
1 −α

)
.

So the automorphism t 7→ γt of F (t) induces the isomorphism of the Mordell-Weil
groups. The group Et2−1,2t,t2+1(F (t)) can have rank 1 or 2 by [14, Thm. 3.1], and
the result follows for any curve Ef,g,h over F (t) where f2 + g2 = h2 determines a
proper parametrization.

Remark 4.6. This way of reasoning can be generalized to any conic αa2+βb2 = γc2

defined over F . We have to fix one parametrization of this conic over F and then
relate other F (t)-parametrizations to the fixed one. So in general we would also get
a choice between rank 1 or 2.

Remark 4.7. It is not always true that the equality 2 deg f = deg(f2 − g2) holds
as the standard parametrization (t2 − 1, 2t, t2 + 1) might suggest. In fact we can
have deg(f2 − g2) < 2 deg f and in the situation of our previous lemma this can
only happen when deg f = deg g = 2 (then we can only have deg(f2 − g2) = 3).
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Consider the following example:

f = t2√
2
− t√

2
+ i

(
t√
2
− 1

2
√

2

)
+ 1

2
√

2

g = t2√
2
− t√

2
+ i

(
1

2
√

2
− t√

2

)
+ 1

2
√

2
h = t2 − t

f2 − g2 = i

(
2t3 − 3t2 + 2t− 1

2

)
Remark 4.8. We can always pull back an elliptic surface (S,P1, π) along a mor-
phism f : P1 → P1 to obtain a new elliptic surface (S′,P1, π′). Surface S′ is
birational to the fiber product S ×φ P1. When we apply this construction to
an automorphism f ∈ Aut(P1), surfaces S and S′ are isomorphic. This implies
that for different parametrizations (f, g, h) and (f ′, g′, h′) that both determine a
proper parametrization of the Pythagorean conic, the surfaces attached to Ef,g,h
and Ef ′,g′,h′ are in fact isomorphic. This isomorphism do not respect the elliptic
fibrations. Nonetheless, the Néron-Severi lattice is the same for both.
Remark 4.9. From [22, Prop. 11.14] or [21, Thm. 8.12] we obtain the invariance of
the height pairing under the automorphism σ ∈ Aut(F (t)). More precisely, for any
P,Q ∈ E(F (t)) the intersection pairing 〈P,Q〉E equals 〈Pσ, Qσ〉Eσ . In particular,
this implies that the Mordell-Weil lattices on both curves are the same.

For polynomials f, g, h that properly parametrize the conic a2 + b2 = c2 the
attached K3 surfaces corresponding to Ef,g,h are isomorphic over Q but not for
any parametrization of a2 + b2 = c2. In fact, we can easily produce an improper
parametrization ( t

2k−1
2 , tk, t

2k+1
2 ) for any k ≥ 2. The elliptic surface attached to

such a curve Ek will have Euler characteristic equal to 2k, so for different values of
k we will certainly obtain non-isomorphic elliptic surfaces. A quick computation
reveals that the two linearly independent points in Ek(Q(t)) that we are able to
produce might not give a complete list of free generators of the Mordell-Weil group.
A numerical computation using the Nagao statistics, cf. [16] suggests that at least
over Q(t) the Mordell-Weil rank should be again equal to 1.
Question 4.10. Is it possible to determine the Mordell-Weil rank of the group
Ek(Q(t)) or Ek(Q(t)) when k varies?

5. Supersingular reduction

An elliptic curve of the form Ef,g,h : y2 = x(x − f2)(x − g2) such that f, g, h
determine a proper parametrization Pf,g,h of the conic a2 + b2 = c2 is a generic
fiber of a K3-surface of a very special type.
Lemma 5.1. Let f, g, h ∈ Q[t] be polynomials that determine a proper parametriza-
tion of the conic a2 + b2 = c2. Let (E ,P1, π) be the Kodaira-Néron model of the curve
Ef,g,h. Then the triple (E ,P1, π) is a singular elliptic K3-surface, i.e. its Picard
number equals 20.
Proof. We have an explicit description of the Kodaira types corresponding to
the singular fibers of π. Corollary 4.4 implies that the rank of the Mordell-Weil
group Ef,g,h(Q̄(t)) is two and the upper bound for the Picard number equal to 20.
Application of the Shioda-Tate formula allows us to conclude the statement. �
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Assume that X is a K3 surface in characteristic 0. We consider the situation
when the rank of NS(X) is maximal possible, equal to 20. We denote by d(X) the
discriminant of the Néron-Severi lattice. For elliptic K3 surfaces it can be computed
if we have the information about the structure of the Mordell-Weil group of the
generic fiber and about the fibration, cf. [21]. We have an explicit formula, cf. [22,
§11.9]

d(X) = (−1)rank(Egen(K))disc(Triv(X)) · disc(MWL(X))/(#(Egen(K))tors)2

Field K is the function field of P1 and Egen is the generic fiber of X. The lattice
Triv(X) is generated by the general smooth fiber F , image of the zero section O
and the components of bad fibers that form root sublattices of standard types
An, Dn and En with appropriate Dynkin diagrams. The lattice MWL(X) =
Egen(K)/(Egen(K))tors with intersection pairing induced from the height pairing
on Egen.

The Neron-Severi group NS(X) embeds as a lattice into H2(X,Z) with its lattice
structure inherited from the cup-product. The orthogonal complement of NS(X) is
called the transcendental lattice of X and is denoted by T (X). For K3 surfaces the
second Betti number equals 22, so for X singular, this means that rank T (X) = 2.
It can be proved that T (X) is an even lattice of discrminant −d(X), cf. [19]. Every
singular K3-surface can be defined over a number field F and we would like to
consider the situation when X can be reduced modulo a prime p. More precisely, we
consider a non-empty open subset U of Spec ZF , where ZF is the ring of algebraic
integers in F , and a smooth proper morphism X → U with generic fiber isomorphic
to X. We denote by πF the canonical morphism SpecZF → SpecZ. For a closed
point p in U we denote by Xp the fiber above p, which is a K3 surface defined over
the residue field of p. In characteristic p the rank of Néron-Severi group can achieve
rank 22. Such a K3 surface is called supersingular. We analyze the set Sp(X ) that
contains primes p above p such that Xp is supersingular. By the work of Shimada
[19] we can now say when the reduction of the K3 surface would be supersingular.
Let χp(x) denote the Legendre symbol (x/p) for p an odd prime. We have the
following theorem

Theorem 5.2 ([19, Thm. 1]). Let p be a prime such that p - 2d(X). Then
• if χp(x) = 1, then Sp(X ) = ∅,
• if p ∈ Sp(X ), then d(Xp) = p2, i.e. the surface Xp is of Artin invariant 1.

Moreover, there exists a finite set N of primes in Z that contains the prime divisors
of 2d(X) such that for any p /∈ N

(33) Sp(X ) =
{
∅ if χp(d(X)) = 1
π−1(p) if χp(d(X)) = −1

This theorem allows us to easily detect for which primes we can expect to have
the supersingular reduction of the surface Sf,g,h attached to the curve Ef,g,h. We
need to compute the discriminant.

Lemma 5.3. Let (f, g, h) be a triple of polynomials which parametrizes the conic
a2 + b2 = c2 in a proper way. The discriminant of the elliptic surface Sf,g,h with
generic fibre Ef,g,h is equal to −32.

Proof. Let X denote the elliptic surface Sf,g,h. From the assumptions the poly-
nomials f , g and f2 − g2 are separable. The trivial lattice in NS(X) contains
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deg f + deg g copies of the root lattice A3, deg(f2 − g2) copies of the lattice A1
and possibly a copy of An−1 lattice that corresponds to the fiber above ∞, where
n = 8 deg f−4 deg g−2 deg(f2−g2). If deg g = deg f = 2 and deg(f2−g2) = 2 deg f
there is no such lattice, namely n = 0. In the situation deg g = 1 we have n = 4
and for deg g = 2 and deg(f2 − g2) = 3 we get n = 2. In each case we obtain that
the trivial lattice is a sum U + 4A3 + 4A1 where U = span (F,O).

Torsion subgroup Ef,g,h(Q̄(t)) was computed in [12] and is of order 8. The
remaining part is the Mordell-Weil lattice. It is of rank two with generators

Q1 =(−(1 +
√

2)g(g − h),
√
−1(1 +

√
2)g(g − h)(

√
2g − h)),

Q2 =((f − h)(g − h), (f + g)(f − h)(g − h))

and height pairing matrix

(34)
(

1/2 0
0 1

)
The root lattices corresponding to different bad fibers are orthogonal to each other
in NS(X) and we have the standard formula disc(An) = (−1)n(n+ 1). The image
of the zero section and the general fiber span a lattice U in NS(X) which is of
discriminant −1. Hence we get d(X) = −32. �

For a model of Sf,g,h with good reduction at a prime above p it easy is to check
whether the reduction will be supersingular. We assume that p 6= 2, because this is
exactly the condition p - 2d(X) from Theorem 5.2.

χp(x) = −1⇔
(
−32
p

)
= −1⇔ p ≡ 5, 7, 13, 15(mod 16).

It is now convenient to switch to the standard parametrization (t2 − 1, 2t, t2 + 1)
and its associated elliptic surface which is defined over Q. The Weierstrass equation
for this model has the form

y2 = x(x− (t2 − 1)2)(x− 4t2).

It is a globally minimal model and is defined over Z[t]. This has the advantage
that we can perform the Tate algorithm both in characteristic zero and in positive
characteristic (at least equal to 5). We can do the blow-ups simultaneously at least
if the reduced equation behaves in a similar way as the equation in characteristic 0,
cf. [12, Tw. 2.2.12].

Proposition 5.4. The surface St2−1,2t,t2+1 has good reduction for primes p ≥ 5.

Proof. We check that after modulo p reduction the radicals of polynomials ai(t) and
of discriminant of the Weierstrass equation, and the numerator and denominator of
j-invariant remain separable (and that they do not have a common root modulo p).
We also check this for the model at infinity. The support of the discriminants of all
computed polynomials is contained in the set {2, 3}. So we can perform the Tate
algorithm in characteristic p and in characteristic zero, and we will get the same
reduction types, which implies that in fact we have a good reduction modulo p. �

The results lead to the following corollary.

Corollary 5.5. The surface St2−1,2t,t2+1 has good supersingular reduction at primes
p ≥ 5 such that p ≡ 5, 7, 13, 15(mod 16). The discriminant of the Néron-Severi
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group is equal to p2. Generic fiber is an elliptic curve over Fp(t) with geometric
Mordell-Weil rank 4.

Proof. By [4, Thm.3,4] we can identify the action of Frobenius automorphism
acting on the transcendental lattice T (X). We find that in our situation we have
the CM-form corresponding to level 8 in [17, Tab.1]. This implies the equality
N = {2, 3} where N is the set from Theorem 5.2. Now we prove the last statement.
Because of the good reduction situation we obtain exactly the same fiber types
of bad reduction. For the supersingular case the Picard number equals 22, so the
application of Shioda-Tate formula leads to the conclusion that the Mordell-Weil
rank of Et2−1,2t,t2+1(Fp(t)) equals 4. �

Remark 5.6. Supersingular K3 surface of Artin invariant 1 is unique up to
isomorphism and very special in another way that the generators of the Néron-
Severi group are defined over Fp2 . So we can even say that Et2−1,2t,t2+1(Fp(t)) =
Et2−1,2t,t2+1(Fp2(t)).

Example 5.7. We can produce explicit basis of the Mordell-Weil group for a few
small primes. In fact, the theorem implies that the height of the extra points that
add rank two to the Mordell-Weil group will grow unbounded and this means that the
computations for sufficiently large primes require sieving over many rational functions
with both denominator and numerator of very high degree. This computations
become quickly infeasible for a typical computer.

In our computations we have exploited the fact that Et2−1,2t,t2+1[2] is contained
in the Fp(t)-rational points subgroup. Under this assumption we can apply a full
2-descent described in [23, Chap. 10]. The torsion subgroup of Et2−1,2t,t2+1(Fp2(t))
is always isomorphic to Z/2⊕ Z/4. This is a consequence of [14, Cor. 5.4] applied
in positive characteristic. The crucial step is to prove that not all two-torsion points
are divisible by 2. It suffices to prove that the polynomial f2 − g2 = t4 − 6t2 + 1 is
separable over Fp2 [t], which is always the case for primes p ≥ 3.

The free part of the Mordell-Weil group will always contain the reductions of
points Q1 and Q2, so below we only present the other two generators and compute
the height pairing matrix. The trivial lattice Triv(St2−1,2t,t2+1) has discriminant
212 and the torsion subgroup has order 8. This implies that if we provide two
points Q3, Q4 such that the height pairing matrix of the tuple (Q1, Q2, Q3, Q4) has
determinant p2/26, then the points generate the free part of the Mordell-Weil group.
Case p = 5: We realize F52 as F5[s]/(s2 + 4s+ 2).

Q3 = (s3t(t+ 1)(t+ s22), s10t(t+ 1)(t+ s3)(t+ s14)(t+ s16)(t+ s22))
Q4 = (t4 + 4t2, t5 + 4t3)

Height pairing matrix with determinant 52/26.
1/2 0 1/4 0
0 1 0 1/2

1/4 0 2 −5/4
0 1/2 −5/4 3/2


Case p = 7: Let us assume that F72 = F7[s]/(s2 − 3).

Q3 = (t2 + t, st(1 + t)(2 + t)2)
Q4 = (1, 2t(3 + t)(4 + t))
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Height pairing matrix with determinant 72/26.
1/2 0 −1/4 0
0 1 0 1/2
−1/4 0 1 0

0 1/2 0 2


Case p = 13: We realize F132 as F13[s]/(s2 + 12s+ 2).

Q3 = (s5(t+ s82)2(t+ 12), s47(t+ s4)(t+ s18)(t+ s82)(t+ 12)(t+ s115))

Q4 =
(

11t(t+ 2)2(t+ 6)2

(t+ 5)2 ,
3t(t+ 2)(t+ 6)(t+ 7)(t+ 8)(t+ 11)

(
t2 + 2t+ 12

)
(t+ 5)3

)
Height pairing matrix with determinant 132/26.

1/2 0 1/4 0
0 1 1/2 1/2

1/4 1/2 2 1/4
0 1/2 1/4 7/2


Example 5.8. The curve y2 = (x−(t2−1)2)(x−4t2)(x+(t2+1)2) that we considered
before also determines a singular K3 surface. By the discriminant computation
we checked that it is equal to −25 · 3, hence we obtain supersingular reduction at
primes p such that

(
−25·3
p

)
= −1, so p = 13, 17, 19, 23, 37, 41, 43, 47, 61, 67, 71, . . ..

We check that the attached CM-form attached to the transcendental lattice by [4]
is of level N = 24, cf [17, Tab. 1]. For each supersingular prime we will obtain rank
8 over Fp2 .

6. Remarks

Below we discuss several aspects of the general family (1) that were not discussed
elsewhere. We deal mainly with the family of type α = β = γ = 1 and for the other
cases we can perform a similar study.

6.1. Lower bounds over Q. We proved in [14] what are the lower bounds for
the Mordell-Weil rank of specialization in our family. This theorem relies on the
Silverman’s specialization result, cf. [24, III §11, Thm. 11.4]. Silverman’s theorem
allows us only to say that for all but finitely many elements in the number field
F over which the curve (1) is defined, the specialization homomorphism will be
injective. We will discuss below an approach to this problem, for number fields
with class number one, that allows us to produce an infinite and explicit set of
specialization for which the specialization homomorphism is injective.

To simplify the exposition we will discuss only the specialization of curves Ef,g,h for
f, g, h ∈ Q[t] which parametrize the conic a2 + b2 = c2. The tool we want to use is
the theorem from [7].

Theorem 6.1 ([7, Thm. 1.1]). Let E be a nonconstant elliptic curve over Q(t)
given by the equation

E = E(t) : y2 = (x− e1)(x− e2)(x− e3) (e1, e2, e3 ∈ Z[t]).

Assume that t0 ∈ Q satisfies the following condition.
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(*) For every nonconstant square-free divisor h in Z[t] of (e1 − e2)(e1 − e3) or
(e2 − e1)(e2 − e3) or (e3 − e1)(e3 − e1), the rational number h(t0)

is not a square in Q.
Then the specialization homomorphism spt0 : E(Q(t))→ E(t0)(Q) is injective.

In our situation, let e1 = 0, e2 = (t2− 1)2 and e3 = 4t2. It is easy to compute the
set of rational numbers that satisfies property (∗). We obtain the set that contains
35 polynomials of degree at most 6. Quick computation reveals that for all rational
numbers t0 with naive height smaller than 500 (there are 304463 such rational
numbers) about 97.5% of this numbers satisfy condition (∗). The set of elements of
Q of naive height at most equal to 10 that satisfy condition (*) is

{−6,−10/3,−8/3,−7/4,−8/5,−10/7,−7/5,−7/6,−6/7,−5/7,−7/10,
−5/8,−4/7,−3/8,−3/10,−1/6, 1/6, 3/10, 3/8, 4/7, 5/8, 7/10, 5/7, 6/7,

7/6, 7/5, 10/7, 8/5, 7/4, 8/3, 10/3, 6}.
Elements of Q that do not satisfy condition (∗) can still produce an injective

specialization homomorphism or at least preserve the rank bound. In this case the
rank of Et2−1,2t,t2+1(Q(t)) equals one and by a direct computation we have checked
that for all t0 for which the specialized curve is nonsingular, the rank was at least
one for all t0 with naive height at most 400.

6.2. Polynomial solutions. For any curve
Eα,β,γ : y2 = x(x− αa2)(x− βb2), αa2 + βb2 = γc2

and a fixed conic C : q(a, b, c) = 0 we can ask for the description of the K(C)-points
of Eα,β,γ . In fact, the curve Eα,β,γ is not well-defined over K(C), so we slightly
change the model to

y2 = x(x− 1)(x− βb2/(αa2)).
By abuse of notation we will denote this curve again by Eα,β,γ . The curve written
this way is an elliptic curve defined over K(C). We ask now for the description of
K(C) points on this curve, written explicitly in terms of homogeneous variables
a, b, c. We will carefully analyze only the simplest case when q(a, b, c) = a2 + b2− c2
is the equation that defines Pythagorean triples. Function field K(C) is isomorphic
to K(P1) = Q̄(t), where t is a variable. We rewrite the equation

(35) y2 = x(x− 1)(x− b2

a2 )

in the form
y2 = x(x− 1)(x−

(
2t/(t2 − 1)

)2).
We use the field isomorphism φ : K(C) → K(P1), which satisfies φ(a/c) =
(t2 − 1)/(t2 + 1), φ(b/c) = 2t/(t2 + 1). This can be deduced from the stan-
dard parametrization of the circle by lines. The inverse to this map φ−1 satisfies
φ−1(t) = b/(c− a).
Proposition 6.2. Every K(C)-point (x, y) on E1,1,1 is represented by three poly-
nomials k, l,m ∈ Q̄[a, b, c] that satisfy x = k/l2, y = m/l3 and deg k = 2 + 2 deg l,
degm = 3 + 3 deg l.
Proof. The proof follows from the definition of φ. We observe that each K(C)-
point on E1,1,1 is obtained from the point on (35) by a linear change of variables
(x, y) 7→ (xa2, ya3). �
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6.3. Two isogeny. We observe that the curve
Ef,g : y2 = x(x− f2)(x− g2)

admits two–isogenies defined over the field K of definition of elements f, g. The
isogenous curve Ef,g/〈T 〉 for T ∈ Ef,g[2] is not always of the form above if the
kernel contains only (f2, 0) or by symmetry (g2, 0). We analyze the isogeny with
kernel {O, (0, 0)}. It is easy to determine it explicitly by Velu formulas [26] and an
explicit computation in MAGMA. Consider the curve

Ei(f−g),i(f+g) : y2 = x(x+ (f − g)2)(x+ (f + g)2)
which is isomorphic to Ef,g/〈(0, 0)〉 overK with isomorphism (x, y) 7→ (x+f2+g2, y).
The two-isogeny τ : Ef,g → Ef,g/〈(0, 0)〉 is given by the formula

τ(x, y) = ((x2 + f2g2)/x, (x2y − f2g2y)/x2).
If we allow the relation f2 + g2 = h2, then −(f − g)2 − (f + g)2 = −2h2. Both
conics a2 + b2 = c2 and −a2 − b2 = −2c2 can be easily parametrized properly with
polynomials in Q(t), however the curves are not Q-isomorphic. The existence of
Q(t)-isogeny implies that we have exactly the same rank of Mordell-Weil groups
over Q(t) for both curves associated with those conics.
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